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Abstract  

 
Teaching and learning about algorithms and data structures is more interesting and enjoyable when 

working with data that has a real-world connection and with results that can be visualized. The project 
described here is an ongoing effort to meet these needs. The goals of this project, Map-based 
Educational Tools for Algorithm Learning, are to provide a set of data files based on highway systems 
worldwide in a convenient graph format, and support tools for the visualization of this data and the 
results of programs that implement algorithms that use this data. It also provides sample assignments 
and solutions for instructors who wish to make use of this work.  The data itself is derived from a 
travel hobbyist project named Travel Mapping, and is provided in the form of plain text data files that 

describe systems of highways in different parts of the world in the form of a graph. Especially 
attractive features include the variety of data sizes available and the ability to visualize this data on a 
map using the Google Maps API.  
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1. INTRODUCTION 
 
Examples and assignments in courses like data 
structures or algorithms can sometimes seem 
dry, boring, and contrived. This can make it hard 
for everyone involved to remain engaged in 

study of even very interesting algorithms. 
The Map-based Educational Tools for Algorithm 
Learning (METAL) project is an effort to provide 
interesting data sets and meaningful 
visualization capabilities for use in class 
examples and assignments for the benefit of 
both instructors and students. It is the successor 

project to the Clinched Highway Mapping as 
Pedagogical Tool project (Teresco, 2012). The 
current project builds upon the previous work by 
expanding the scope and improving the quality 
of the data, providing that data in multiple 
formats, and by extending and improving the 
capabilities of the visualization system.  

This paper describes the overall project, with the 
recent improvements highlighted. The 
motivation for the project is in Section 2. A 

summary of the available graph data is given in 
Section 3. The Highway Data Examiner (HDX) 
visualization tool is described in Section 4. 
Example usage of the data sets and visualization 
in classes is in Section 5. Section 6 presents 
results of a survey of students who used METAL 

in class work.  Background information about 
the Travel Mapping hobbyist project (TM), which 
provides the raw data for this project, is 
described in Section 7. Section 8 details how TM 
data is converted into METAL’s graph data. 
Conclusions and some thoughts on the current 
and future directions of the project are discussed 

in Section 9.  

2. MOTIVATION 
 
This project grew out of the author’s 
dissatisfaction with a data structures assignment 
about Dijkstra’s algorithm for computing single-
source shortest paths on a graph. The first 

enhancement of that assignment that used 
highway mapping data and provided 
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visualization capabilities using the Google Maps 

API was very successful (Teresco, 2010), and 
led to the greatly expanded project described 
here. 

Choosing a data set for Dijkstra’s algorithm and 
related topics presents some challenges. To be 
explored thoroughly in class or as part of a 
homework assignment, the data must 
necessarily be small, but should still be 
interesting. A common approach is to find or 
construct a graph that has some small collection 

of locations (e.g., cities, airports, rooms in a 
building) to use as vertices, and edges that are 
labeled with a cost (e.g., time, distance, price) 
to travel between adjacent locations. Many 
textbooks include such examples, e.g., (Bailey, 
2007) Exercise 16.7, p. 436, and Figure 1 (top) 

shows an example graph often used by the 
author (Teresco, 2012).  
 

 
Figure 1: Massachusetts Towns 

 
Figure 1 (Top): a simple graph of towns and the 
distances between them in Massachusetts that 
can be used to demonstrate graph structures 
and algorithms. (Bottom): Single-source 
shortest paths computed on the graph.  
 

This graph works well for several reasons. It is 

derived from real-world information and it is 
small enough to trace through an example in its 
entirety. Graphs with similar structure can easily 
be created and used for exam questions. The 
data sets presented here would not necessarily 

replace these simple examples, but more likely 
supplement them.  
 
The beneficial attributes of METAL data and tools 
described in the following sections include:  

• The data is based on actual places: the 

waypoints along major highways from the TM 
data.  
• The granularity of the data is very convenient. 

It is fine enough to be able to represent many 
major roads and their intersections, but coarse 
enough to ignore minor places and intersections.  
• Provided data files, all in a common format, 
range in size from just a handful of vertices and 
edges, useful for hand-traced examples or for 
debugging code, to hundreds of thousands of 

vertices and edges, useful for meaningful 
performance analysis, and everything in 
between. Each file represents a subset of 
highways in North America, Europe, Asia, or 
Africa.  
• Each graph is provided in two formats (Section 

8).  For “simple” graphs, edges are straight 
lines, while “collapsed” graphs have edges with 
intermediate points included that improve the 
accuracy of the edge’s shape and length relative 
to the road segment it represents. 
• The data and results produced by programs 
that use the data can be visualized in map form.  

 
The use of visualizations in learning data 
structures and algorithms has a long history. 
See, e.g., (Naps, Rößling, Almstrum, Dann, 
Fleischer, Hundhausen, Korhonen, Malmi, 
McNally, Rodger & Velázquez-Iturbide, 2003), 
(Shaffer, Cooper, Alon, Akbar, Stewart, Ponce & 

Edwards, 2010).  The focus here is on the 
highway-based graph data and on the pre- and 

post-processing visualization capabilities of 
METAL, and their use in courses. 

 
3. AVAILABLE DATA SETS 

 
METAL graph data is regenerated (as detailed in 
Section 8) each time there is an update to the 
underlying TM highway data (as detailed in 
Section 7). Graphs include both simple and 
collapsed formats for each of the following: (1) 
one set for all TM data, (2) one set for each 

region (e.g., state, province) and country, (3) 
one set for each large multi-region highway 
system (e.g., U.S. Interstates, European “E” 
roads), (4) one for each continent, (5) a set of 

area graphs for highways within a specific radius 
of a place like a college or a major city, and (6) 
a set of graphs spanning a specific group of 

regions (e.g., the New England states in the 
U.S.). As of this writing, there are 596 graphs in 
the ever-expanding set, ranging in size from 3 
vertices and 2 edges up to 439,746 vertices and 
486,665 edges. 
Small graph data sets are useful for debugging 

of programs or even manual tracing. Somewhat 
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larger sets allow for more realistic situations to 

be tested. Scalability and performance analysis 
studies are possible with the largest sets. 
Graphs are derived from data in various parts of 

the world leading to differences in spatial scale, 
density, and connectivity, as well as size.  
 

4. HIGHWAY DATA EXAMINER 
 
A key feature of METAL is its open-source 
Highway Data Examiner (HDX) visualization tool 
(http://courses.teresco.org/metal/hdx/), leveraging 

the Google Maps API. HDX can visualize raw TM 
data, METAL’s graph data, or the results of 
computations that use the data. Users can 
access METAL’s HDX installation or could host 

their own instance. HDX now supports more file, 

its user interface has been redesigned to focus 
more on the map, and many usability 
improvements have been made compared to 
earlier versions (Teresco, 2012).  
HDX has several modes of operation, depending 
on the format of the file loaded. Some are 

intended for TM or METAL developers, while 
others are intended for students and instructors. 
Figures in the next section are HDX screen 
captures. The HDX map inherits a full set of 
Google Maps features, including zoom and pan 
functionality, and a variety of map tile 
backgrounds can be selected.  

 
5. USAGE IN COURSES 

 

METAL and its predecessor projects have been 
used and improved in the author’s courses 
nearly every semester for several years, and 

other instructors have used it in courses 
elsewhere. This section highlights some of the 
tasks students have been assigned. A few of 
these uses have been described previously 
(Teresco, 2010, 2012), others are new, but all 
have been improved and expanded. 
 

Using Waypoint/Vertex Data Only  
The first time students are asked to work with 
METAL data, the task is typically centered 
around reading and parsing the contents of TMG 
files (Section 9), but limited to the vertex data. 

Students write a program that searches for the 
vertices that are at the northernmost, 

southernmost, easternmost, and westernmost 
locations, and searches the vertex labels for the 
longest, shortest, first alphabetically, and last 
alphabetically. For a more challenging task, 
students could be required to keep track of all 
vertices that tie for the “win” for a given search 

criterion. In a data structures course, for 

example, this can be an engaging way to refresh 

prerequisite knowledge.  
A subsequent task involves creating a data 
structure to encapsulate the information of a 

graph vertex (label and coordinates), and 
storing an instance for each vertex in an array 
or ArrayList. This collection can then be used in a 

simple interactive search such as printing all 
labels that have a given prefix, substring, or 
length.  

Building a collection of objects representing the 
vertices also presents an excellent opportunity 
when studying sorting. This data has many 
natural sorting criteria, which motivates and 
demonstrates the power of a comparator-based 
sort, where different comparators allow that 

same implementation to sort by various criteria.  

An especially successful task is associated with a 
lab where students implement a generic data 
structure that keeps track of the k “best” (by 
some criteria, ideally determined by a 
comparator) of n values added to the structure. 
Bailey (2007) refers to this as a “Best Of” 

ordered structure in a lab assignment (p. 275). 
Requiring students to find the k best for different 
values of k, for different comparison criteria, and 
for the larger of the METAL data sets forces 
them to make their implementations sufficiently 
generic and efficient.  
Even in these vertex-only examples, HDX can be 

used to visualize the input data and the results 
in both map and tabular form. It can be difficult 
to look at some numbers in console output and 

decide that they appear to be correct. It is much 
easier to see that, for example, the directional 
extreme points are correct, when viewing in 

HDX. Figure 2 shows a small example graph, the 
primary highway system in Andorra (the 
“Carreteras Generales”). Figure 3 shows a 
visualization of the extreme points as written to 

a “waypoint list” (.wpl) file.    

 

 
Figure 1: METAL’s GRAPHS 

 

Figure 2: METAL’s graph of highways in Andorra 
as shown in HDX.  The scrollable table on the 
right lists all vertices and edges. 
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Among the more advanced assignments 
restricted to vertices only that have used METAL 
is the computation of the convex hull of the 

vertex points. The resulting polygon can also be 
visualized by HDX. 
 

 
Figure 3 

 
Figure 3: A visualization of the results of a 
search for the extreme points in the Andorra 
graph from Figure 2, shown in HDX.  It is much 
more quickly evident from the map than from 
text output that the answers are correct. 
 

Introducing Edge Data  
Students in sufficiently advanced classes 
construct and work with a graph structure. 
Students can be provided with or be required to 
build their own graph data structure and 
appropriate support structures to use to store 
graph vertex and graph edge labels. For 

collapsed format graphs, the edge structures are 
non-trivial.  
 
With both vertices and edges available, search 
algorithms can be extended to find features such 
as the vertex with the highest degree, the 

longest and shortest edges, the edges with the 
most intermediate shaping points, and the edges 
with the most concurrent routes (multiple routes 
that share the connection represented by an 
edge are separated by commas in the edge 
labels in TMG files). The “best of” ordered 
structure can also be reused to find the k 

longest or shortest or other features of edge 
data, reinforcing the importance and power of 
building a generic data structure. These can also 

be visualized with HDX, using its “near miss 
point” (.nmp) format, illustrated in Figure 4, 

which shows the 5 longest edges in the Andorra 

graph. HDX takes pairs of waypoints from an 
NMP file and plots them on the map with an 
edge connecting them. 
 
Figure 4: HDX visualization of the 5 longest 
edges (without shaping points shown) in the 

Andorra graph from Figure 2. The visual 

feedback of the map makes it clear that these 

are long edges, and likely the correct result. 
 

 
Figure 4 

 
The original motivation for this project and still a 

very successful assignment is “Dijkstra’s Road 
Trip,” where students are required to implement 

Dijkstra’s algorithm for single-source shortest 
paths. Once a graph is in memory, Dijkstra’s 
algorithm is used to find the shortest path (in 
distance, not time, since METAL does not have 
speed limit information) from a starting graph 
vertex to a destination graph vertex. The 
algorithm itself brings together several topics 

from a data structures or algorithms class 
including graph operations, priority queues, and 
tables. Using METAL data for this adds a real-
world aspect to the assignment, and HDX allows 
students to visualize the shortest paths they 
have computed. For example, the shortest path 
computed from TunEnv/N22 to CG6@CS600 in the 

Andorra graph of Figure 2 is shown in Figure 5. 
Here, HDX is displaying the contents of a 
“waypoint path” (.pth) file produced by a Java 

program that implemented Dijkstra’s algorithm.  

 

 
Figure 5 

 
Figure 5: HDX visualization of the shortest path 
computed by Dijkstra’s algorithm from 
TunEnv/N22 to CG6@CS600 in the Andorra graph 

from Figure 2.  The fact that this appears on the 
map to be a reasonable route from the source to 
the destination gives useful feedback about the 
correctness of the result. 
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Breadth-first and depth-first graph traversals 

have also been part of assignments using METAL 
data and HDX.  
In summary, METAL has been used in courses 

for vertex and edge search algorithms, including 
straightforward searches for a maximum or 
minimum value and finding the k “Best Of” 
values, finding convex hulls, performing depth-
first and breadth-first traversals, and using 
Dijkstra’s algorithm for single-source shortest 
paths.  In each of these cases, the ability to see 

the input data and results on the map can aid in 
the understanding of what the algorithm is 
trying to compute and to see that the results are 
correct. 
Details of assignments using METAL, including 
handouts, starter code, and sample solutions, 

are available to instructors upon request.  
 

6. STUDENT EVALUATION 
 
METAL’s data and visualization capabilities have 
enabled class examples and assignments that 
students in several of the author’s courses have 

found engaging and challenging. 
Students in the most recent course to work with 
METAL, the author’s Spring 2017 Analysis of 
Algorithms course at Siena College, were given 
the option to take a short survey about their 
experience (Siena IRB #04-17-049).  34 
students responded and the results were 

overwhelmingly positive.  The first three 
questions focused on items related to the parts 

of METAL presented in this paper. Table 1 
summarizes the responses. 
 

 Q1 Q2 Q3 

Strongly Agree 8.8% 35.3% 35.3% 

Agree 47.1% 47.1% 50.0% 

Somewhat Agree 29.4% 11.8% 8.8% 

Neither Agree/Dis 8.8% 2.9% 8.8% 

Somewhat Disagree 2.9% 0.0% 0.0% 

Disagree 0.0% 0.0% 0.0% 

Strongly Disagree 2.9% 2.9% 0.0% 

Table 1: Student survey responses. 
 
  Q1: “Working with the highway graph data is 

more interesting and engaging than working 

with other data sets.”  Q2: “The ability to view 
the highway graph data in map form makes it 
more interesting and engaging to me.”  Q3: 
“The fact that the highway graph data has a 
direct real-world connection makes it more 
interesting and engaging to me.” 

 
These responses, while a small sample, are very 
encouraging.  Almost all students agreed to 
some extent with the project’s assumptions that 

the real-world highway data and ability to 

visualize in map form are interesting and 
engaging, and much of their agreement was 
quite strong.  For question 1, the intent was that 

they compare using map data against synthetic 
examples they had seen in class and 
assignments. 
 

7. THE TRAVEL MAPPING PROJECT 
 
This section provides background information 

about the Travel Mapping project, which 
provides METAL’s raw data.  
The TM project (Travel Mapping, 2017) is being 
developed and maintained by a group of travel 
enthusiasts as a way to track and view their 
cumulative travels, inspired by the dormant 

Clinched Highway Mapping (CHM) project 
(Reichard, 2010). TM’s users submit lists of 
highway segments they have traveled, and 
those are matched with highway data to produce 
statistics and maps of the user’s travels. 
 
Travel Mapping Data 

There are many ways to obtain data to construct 
graphs of roads and places. For example, the 
OpenStreetMap project (OpenStreetMap, 2016) 
provides a massive amount of data that could be 
adapted. The TM data described below has 
proven to be a convenient and appropriate 
source of data for METAL’s graphs. 

TM highway data consists of thousands of plain-
text files, organized both by region (often an 

entire country, but states/provinces/equivalents 
for larger countries), and highway system, such 
as the U.S. Interstate Highways, the New York 
State Touring Routes, or German Autobahns. For 

example, the segment of Interstate 90 within 
Ohio would be represented as a TM route, and 
would be placed in the OH region (Ohio) and the 
usai highway system (U.S. Interstates). 

Individual routes, or segments of routes within a 

region, are each represented by a waypoint file. 
These files approximate the route of the highway 
using a list of waypoints in the order they occur 
from one end of the route to the other. A 
waypoint consists of a label, normally the name 
of an intersecting road or exit number, and an 

OpenStreetMap URL that encodes its 

coordinates. The file representing Washington’s 
Route 523 in Seattle is shown in Appendix A. 
TM highway data is always being expanded, 
corrected, and otherwise improved by a team of 
volunteers. As of this writing, 33,011 routes 
across North America, Europe, Asia, and Africa 

have been plotted for a total of 984,592 miles 
(1,584,547 km). 450,038 unique locations have 
been plotted as starting, ending, intersecting, or 
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other interesting points along these routes. Data 

is derived only from permissible, open sources 
(http://tm.teresco.org/credits.php). Routes are 

normally plotted from map imagery from the 
OpenStreetMap project or open government 
satellite or topographic imagery. In particular, 
since it is unclear whether data created by 
selecting points from Google Maps would be 
permitted by Google’s terms of use, TM 
volunteers take care not to derive project data 

from Google Maps or other proprietary imagery. 
However, TM and METAL do use the Google 
Maps API extensively, in accordance with 
Google’s terms of use.  
 
Shaping Points 

The granularity of TM data makes it an ideal 

source from which to generate METAL graphs.  
Intersections to be included as waypoints are 
chosen to obtain a reasonably accurate 
approximation of the route. Less significant 
intersections that would add memory and 
computational costs to the data processing, 

database, and mapping capabilities without 
much improvement in accuracy of the route are 
omitted. Choosing only major intersections 
usually leads to routes with a sufficiently 
accurate approximation. Consecutive waypoints 
are rarely more than a few miles apart and are 
often closer. 

In situations such as limited-access routes with 
long sections between interchanges or curvy 
routes, the usual points might not provide 

sufficient accuracy. Shaping points, invisible to 
TM users other than as improvements in map 
accuracy, can be added to the route (as regular 

waypoint entries whose labels begin with ‘+’) to 
improve its approximation. For example, Figure 
6 shows the section of Interstate 90 in 
Massachusetts between interchanges 2 and 3, a 
limited-access road through a mountainous 
area. The direct distance between the two 
endpoints (shown by the straight purple line in 

the figure) is 28.3 miles, but the actual road 
distance is 30.3 miles. By adding 9 shaping 
points, the segment is represented more 
accurately by 10 shorter, but still straight line, 
segments totaling 30.1 miles. 

TM data and more details about its organization 
are available in its public repository at 
https://github.com/TravelMapping/HighwayData.  

 

 
Figure 6 

Figure 6: The route between interchanges 2 and 
3 of I-90 in Massachusetts demonstrating the 
use of shaping points to improve the 
approximation of the road. The straight purple 
(darker, if viewing in greyscale) line indicates 
the direct path between the interchanges. The 

pink (lighter, in greyscale) path includes 9 
intermediate shaping points.  
 

8. CONSTRUCTING GRAPH DATA 
 
TM raw data can be interesting for educational 
use, but its real value arises once this data has 

been used to produce METAL’s graphs. The basic 
idea remains similar to that used in the 
predecessor project (Teresco, 2012): the 
waypoints from each route become graph 
vertices, and the connections between 
consecutive waypoints in a route become graph 
edges.  This section provides details about that 

process for completeness, but the typical METAL 
user would only be concerned about the graphs 

that result from this process. 
 
Graph Construction Process  
Graph generation is integrated into TM’s site 

update process, which populates the database 
used by TM’s web front end with information 
gathered from highway and user data files.  
Each graph vertex is labeled based on the route 
name and the waypoint label. The graph vertex 
corresponding to the first line for Washington 
523’s file in Appendix A would be named 
WA523@WA99, and its coordinates would be 

taken from the URL. The edge representing the 
connection between the first two lines in the 
same file would be labeled with the route name, 
WA523. The length of the edge is not computed 

or stored at graph creation time, as it can be 
computed when needed using the coordinates of 
its vertex endpoints.  
 
Waypoints on intersecting routes should share a 
single graph vertex for their junction, so a 

search is performed as each waypoint is 
processed to find any existing vertex with the 
same coordinates. If a vertex already exists, this 
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waypoint is added to that vertex. The efficiency 

of this search is greatly improved by storing the 
waypoints in an adaptive quadtree structure 
(Samet, 1985).  

 
Some highways overlap (i.e., have a 
“concurrency”) for part of their routings. For 
example, part of Washington’s Capital Beltway 
carries designations of both I-95 and I-495. 
Corresponding waypoints at each location along 
a concurrency, like intersecting points, should 

share a single graph vertex. Graph edges along 
a concurrency should also exist just once, but be 
designated as carrying all the routes along that 
concurrency.  
 
Intersection and concurrency detection rely on 

the coordinates being precisely the same in the 
source data. Work is ongoing by TM volunteers, 
using both automatic and manual techniques, to 
align points where this is not the case.  
 
Graph vertex naming is complicated by locations 
that have multiple corresponding waypoints due 

to intersections and concurrencies. Each graph 
vertex has a “failsafe” label, built by 
concatenating route/waypoint label information 
from each concurrent waypoint, separated with 
‘&’ characters. Simplification rules then produce 

a “canonical” label to reduce the number of 

excessively long labels. Some examples are 
shown in Appendix B. There is no harm in long, 
complicated labels other than that the simpler 

labels are easier to type and display. 
 
Waypoint labels can be repeated in different 
regions that contain parts of the same route. I-95 

along the U.S. east coast has 9 points labeled 
“1” for an exit numbered 1 (the route’s exit 

numbers reset at state boundaries). To 
differentiate vertex labels and maintain vertex 

label uniqueness when the canonical labels 
conflict, the region can be appended.  For 
example, I-95’s Exit 1 in Georgia has vertex label 
I-95@1|GA. 

 

In the end, all vertices have unique labels, and 
the majority of complicated failsafe labels are 

automatically simplified. 
 
Collapsing Shaping Points  
An important new feature of METAL is its 

improved handling of the shaping points from 
TM data during graph generation. Previously, 
shaping points were treated the same as any 
other, except that the visualization tools 
(Section 4) would hide them on the map. This 
original “simple” format remains supported, but 

each graph is also provided in a “collapsed” 

format.  
 
Since shaping points are not in themselves 

useful or meaningful points, just accuracy 
improvements, the collapsed format in METAL 
treats them as points that help define the edge 
between two vertices with more accuracy. Using 
the example from Figure 6, the edge connecting 
the endpoints of the long, curvy segment, with 
vertex labels I-90@2|MA and I-90@3|MA, includes 

the list of latitude-longitude pairs for the shaping 
points along that path.  
The in-memory graph is first built with shaping 
points represented as graph vertices. The 
transformation of this simple graph into a 

collapsed graph requires a single traversal of the 

graph vertices. Since shaping points are not 
intersections of routes represented in the TM 
data (they would be regular waypoints in that 
case), graph vertices that represent shaping 
points must have exactly two incident edges. A 
data error is flagged if this is not the case. To 

collapse the vertex representing the shaping 
point, that vertex and its incident edges are 
removed from the graph, and a new edge is 
created connecting the vertices at the opposite 
ends of the removed edges. The coordinates of 
the shaping point being removed are added to 
the list of intermediate points along that edge.  

The simple graph generated in the area shown in 
Figure 6 has a vertex labeled I-90@+X12|MA that 
represents the shaping point between I-90@3|MA 

and I-90@4. When the vertex I-90@+X12|MA is 

visited during the collapse procedure, that 
vertex, and the edges that connect it to I-

90@3|MA and I-90@4 are removed, and a new 
edge is introduced with I-90@3|MA and I-90@4 as 

endpoints, with the coordinates of I-90@+X12|MA 

attached to that edge’s list of intermediate 
points.  
 
Care is taken to ensure the ordering of 

intermediate points remains correct as vertices 
are collapsed during the conversion process. 
Even though the graph is undirected, the order 
of the intermediate points must remain 
consistent. The edges being removed could each 

have a list of intermediate points from previous 

collapsing steps that need to be combined with 
the new point from the vertex being eliminated. 
Fortunately, all of this is handled during graph 
creation, and is not the concern of students or 
instructors using this data. 
 
Graph Data File Formats  

Once the in-memory graph construction is 
complete, the overall master graphs and 
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hundreds of subgraphs are created and written 

to files. The “Travel Mapping Graph” (TMG) file 
format is straightforward, consisting of four 
sections: 

 
1. A single header line: the string TMG, a 
version number, and the string simple or 
collapsed to specify which graph format is 

expected.   

 
2. A line containing the number of vertices |V| 

and edges |E| in the file.    

3. |V| lines specifying vertices, each consisting of 

a waypoint label and the point’s coordinates.  

 
4. |E| lines specifying the edges, each consisting 

of two vertex numbers (determined by their 
order in the vertex list section of the file) and an 
edge label specifying the routes that traverse 
this edge. For a collapsed graph, the line can 

then include an even number of floating-point 
values, that taken in pairs, are the latitudes and 
longitudes of any shaping points that have been 
collapsed into this edge.  
 
For example, an excerpt of the collapsed format 
graph file that includes all plotted highways 

within the state of Nebraska is shown in 
Appendix C.  One edge shown includes 
coordinates for one shaping point and another 
includes coordinates for two shaping points. 
Note that the simple format graph can be 

represented in a collapsed file format with no 

edge shaping points. The distinction is made to 
allow those loading the file to be able to choose 
an appropriate data structure (one that can 
store those shaping points, or not). 

  
9. CONCLUSIONS AND FUTURE WORK 

 

New features of METAL described here include a 
greatly expanded and higher quality set of graph 
data files, graph data files provided in both the 
simple and collapsed formats, and a new version 
of HDX with significant user interface, 
functionality, and efficiency improvements.  
These enhancements, along with an expanded 

set of classroom-tested student tasks, make 

METAL an easy-to-adopt supplement to 
computing courses, especially data structures 
and algorithms.  
 
The survey results, while not a formal study, 

provide encouraging feedback that students find 
the project interesting and engaging.  More 
formal studies are planned to quantify METAL’s 
effectiveness as a teaching tool. 
 

Ideas for new class examples and assignments 

that could use METAL in the future include 
quadtree data structures and algorithms, 
sorting, finding connected components, graph 

partitioning, spanning trees, and any number of 
more advanced graph algorithms.  Usage to date 
has only scratched the surface of METAL’s 
potential to supplement computing curricula 
from the K-12 and undergraduate 
computing/information technology literacy 
audiences, to introductory programming, right 

up to advanced undergraduate and graduate 
level courses. 
The scope and quality of graph data improves 
every time the underlying TM data improves.  
Each time METAL is used in a course, that use is 
expanded and improved based on the previous 

course’s results. New features are being added 
and other improvements are being made to 
HDX.  An especially exciting development, to be 
described separately, is the implementation 
currently underway of interactive algorithm 
visualization capabilities using METAL data and 
HDX.  
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Appendix A: SAMPLE TM WAYPOINT FILE 

 
WA99 http://www.openstreetmap.org/?lat=47.734121&lon=-122.345123 

I5 http://www.openstreetmap.org/?lat=47.733984&lon=-122.324481 
WA522 http://www.openstreetmap.org/?lat=47.733753&lon=-122.292359 

 
This file is named wa.wa523.wpt, represents Washington State Route 523, is part of the WA region (the 
U.S. state of Washington), and is part of the usawa system (the Washington State Highways). 

 

Appendix B: EXAMPLES OF VERTEX LABEL SIMPLIFICATIONS 
 

METAL graph vertices are initially assigned failsafe labels as described in Section 8.  A series of 
simplification patterns are applied to convert lengthy failsafe labels into shorted canonical labels.  
Three examples are given below. 

 
• In Canada, Yukon Territory routes 1 and 3 intersect in Haines Junction. YT1 has a waypoint labeled 

YT3, and YT3 has a waypoint labeled YT1. These are combined to form the failsafe label 

YT1@YT3&YT3@YT1. A simplification rule then renames this as YT1/YT3.  

 
• In Mittenwald, Germany, European route E533 and German route B2 are concurrent, and intersect 

with a street named Alpenkorpsstraße, each with a point labeled AlpStr. These are combined to form 
the failsafe label E533@AlpStr&B2Wei@AlpStr, which is simplified to E533/B2Wei@AlpStr.  

 
• In Waipahu, Hawaii, Interstate highway I-H1 has an interchange labeled with its exit number, 5, 
where it intersects with Hawaii route 76, which uses the label I-H1/750 and Hawaii route 750, which 
uses the label I-H1/76. These are combined to form the failsafe label I-H1@5&HI76@I-H1/750&HI750@I-

H1/76. One of the newest simplification rules renames this as I-H1/HI76/HI750.  

 
Appendix C: SAMPLE METAL GRAPH FILE 

 
This following is an excerpt from the METAL graph TMG file NE-region.tmg. This graph includes data 

from all highways in the U.S. state of Nebraska that are plotted in TM. 

 
TMG 1.0 collapsed 
3069 3414 
US385/SD79@NE/SD 43.000818 -103.224192 
NE2@SD/NE&NE71@NE/SD&SD71@NE/SD 43.001462 -103.653731 
NE2/NE71@ToaRd_N 43.00094 -103.641822 
US83@NE/SD 42.998496 -100.573397 
... 3063 more vertex entries omitted ... 
KS99/NE99@KS/NE 40.000923 -96.350698 
NE65@KS/NE 40.000778 -96.16274 
2941 2927 NE89 
2984 2920 NE105 
2927 2919 NE89 
1468 1387 NE71 41.261937 -103.63811 
2429 2296 US83 40.565463 -100.629981 40.640897 -100.632395 
... 3408 more edge entries omitted ... 
369 364 US20 

 
The complete file has 3069 lines representing vertices, followed by 3414 lines representing edges.  
The NE71 edge includes coordinates for one shaping point, and the US83 edge includes coordinates for 

two shaping points. 


