
2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://iscap.info

Improved Highway Data and Map Visualizations for

Teaching Data Structures and Algorithms

James D. Teresco

jteresco@siena.edu

Department of Computer Science
Siena College

Loudonville, NY 12211 USA

Abstract

Teaching and learning about algorithms and data structures is more interesting and enjoyable when

working with data that has a real-world connection and with results that can be visualized. The project
described here is an ongoing effort to meet these needs. The goals of this project, Map-based
Educational Tools for Algorithm Learning, are to provide a set of data files based on highway systems
worldwide in a convenient graph format, and support tools for the visualization of this data and the
results of programs that implement algorithms that use this data. It also provides sample assignments
and solutions for instructors who wish to make use of this work. The data itself is derived from a
travel hobbyist project named Travel Mapping, and is provided in the form of plain text data files that

describe systems of highways in different parts of the world in the form of a graph. Especially
attractive features include the variety of data sizes available and the ability to visualize this data on a
map using the Google Maps API.

Keywords: Pedagogical tools, Graph data structures, Algorithm visualization, Google Maps API.

1. INTRODUCTION

Examples and assignments in courses like data
structures or algorithms can sometimes seem
dry, boring, and contrived. This can make it hard
for everyone involved to remain engaged in

study of even very interesting algorithms.
The Map-based Educational Tools for Algorithm
Learning (METAL) project is an effort to provide
interesting data sets and meaningful
visualization capabilities for use in class
examples and assignments for the benefit of
both instructors and students. It is the successor

project to the Clinched Highway Mapping as
Pedagogical Tool project (Teresco, 2012). The
current project builds upon the previous work by
expanding the scope and improving the quality
of the data, providing that data in multiple
formats, and by extending and improving the
capabilities of the visualization system.

This paper describes the overall project, with the
recent improvements highlighted. The
motivation for the project is in Section 2. A

summary of the available graph data is given in
Section 3. The Highway Data Examiner (HDX)
visualization tool is described in Section 4.
Example usage of the data sets and visualization
in classes is in Section 5. Section 6 presents
results of a survey of students who used METAL

in class work. Background information about
the Travel Mapping hobbyist project (TM), which
provides the raw data for this project, is
described in Section 7. Section 8 details how TM
data is converted into METAL’s graph data.
Conclusions and some thoughts on the current
and future directions of the project are discussed

in Section 9.

2. MOTIVATION

This project grew out of the author’s
dissatisfaction with a data structures assignment
about Dijkstra’s algorithm for computing single-
source shortest paths on a graph. The first

enhancement of that assignment that used
highway mapping data and provided

mailto:jteresco@siena.edu

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://iscap.info

visualization capabilities using the Google Maps

API was very successful (Teresco, 2010), and
led to the greatly expanded project described
here.

Choosing a data set for Dijkstra’s algorithm and
related topics presents some challenges. To be
explored thoroughly in class or as part of a
homework assignment, the data must
necessarily be small, but should still be
interesting. A common approach is to find or
construct a graph that has some small collection

of locations (e.g., cities, airports, rooms in a
building) to use as vertices, and edges that are
labeled with a cost (e.g., time, distance, price)
to travel between adjacent locations. Many
textbooks include such examples, e.g., (Bailey,
2007) Exercise 16.7, p. 436, and Figure 1 (top)

shows an example graph often used by the
author (Teresco, 2012).

Figure 1: Massachusetts Towns

Figure 1 (Top): a simple graph of towns and the
distances between them in Massachusetts that
can be used to demonstrate graph structures
and algorithms. (Bottom): Single-source
shortest paths computed on the graph.

This graph works well for several reasons. It is

derived from real-world information and it is
small enough to trace through an example in its
entirety. Graphs with similar structure can easily
be created and used for exam questions. The
data sets presented here would not necessarily

replace these simple examples, but more likely
supplement them.

The beneficial attributes of METAL data and tools
described in the following sections include:

• The data is based on actual places: the

waypoints along major highways from the TM
data.
• The granularity of the data is very convenient.

It is fine enough to be able to represent many
major roads and their intersections, but coarse
enough to ignore minor places and intersections.
• Provided data files, all in a common format,
range in size from just a handful of vertices and
edges, useful for hand-traced examples or for
debugging code, to hundreds of thousands of

vertices and edges, useful for meaningful
performance analysis, and everything in
between. Each file represents a subset of
highways in North America, Europe, Asia, or
Africa.
• Each graph is provided in two formats (Section

8). For “simple” graphs, edges are straight
lines, while “collapsed” graphs have edges with
intermediate points included that improve the
accuracy of the edge’s shape and length relative
to the road segment it represents.
• The data and results produced by programs
that use the data can be visualized in map form.

The use of visualizations in learning data
structures and algorithms has a long history.
See, e.g., (Naps, Rößling, Almstrum, Dann,
Fleischer, Hundhausen, Korhonen, Malmi,
McNally, Rodger & Velázquez-Iturbide, 2003),
(Shaffer, Cooper, Alon, Akbar, Stewart, Ponce &

Edwards, 2010). The focus here is on the
highway-based graph data and on the pre- and

post-processing visualization capabilities of
METAL, and their use in courses.

3. AVAILABLE DATA SETS

METAL graph data is regenerated (as detailed in
Section 8) each time there is an update to the
underlying TM highway data (as detailed in
Section 7). Graphs include both simple and
collapsed formats for each of the following: (1)
one set for all TM data, (2) one set for each

region (e.g., state, province) and country, (3)
one set for each large multi-region highway
system (e.g., U.S. Interstates, European “E”
roads), (4) one for each continent, (5) a set of

area graphs for highways within a specific radius
of a place like a college or a major city, and (6)
a set of graphs spanning a specific group of

regions (e.g., the New England states in the
U.S.). As of this writing, there are 596 graphs in
the ever-expanding set, ranging in size from 3
vertices and 2 edges up to 439,746 vertices and
486,665 edges.
Small graph data sets are useful for debugging

of programs or even manual tracing. Somewhat

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://iscap.info

larger sets allow for more realistic situations to

be tested. Scalability and performance analysis
studies are possible with the largest sets.
Graphs are derived from data in various parts of

the world leading to differences in spatial scale,
density, and connectivity, as well as size.

4. HIGHWAY DATA EXAMINER

A key feature of METAL is its open-source
Highway Data Examiner (HDX) visualization tool
(http://courses.teresco.org/metal/hdx/), leveraging

the Google Maps API. HDX can visualize raw TM
data, METAL’s graph data, or the results of
computations that use the data. Users can
access METAL’s HDX installation or could host

their own instance. HDX now supports more file,

its user interface has been redesigned to focus
more on the map, and many usability
improvements have been made compared to
earlier versions (Teresco, 2012).
HDX has several modes of operation, depending
on the format of the file loaded. Some are

intended for TM or METAL developers, while
others are intended for students and instructors.
Figures in the next section are HDX screen
captures. The HDX map inherits a full set of
Google Maps features, including zoom and pan
functionality, and a variety of map tile
backgrounds can be selected.

5. USAGE IN COURSES

METAL and its predecessor projects have been
used and improved in the author’s courses
nearly every semester for several years, and

other instructors have used it in courses
elsewhere. This section highlights some of the
tasks students have been assigned. A few of
these uses have been described previously
(Teresco, 2010, 2012), others are new, but all
have been improved and expanded.

Using Waypoint/Vertex Data Only
The first time students are asked to work with
METAL data, the task is typically centered
around reading and parsing the contents of TMG
files (Section 9), but limited to the vertex data.

Students write a program that searches for the
vertices that are at the northernmost,

southernmost, easternmost, and westernmost
locations, and searches the vertex labels for the
longest, shortest, first alphabetically, and last
alphabetically. For a more challenging task,
students could be required to keep track of all
vertices that tie for the “win” for a given search

criterion. In a data structures course, for

example, this can be an engaging way to refresh

prerequisite knowledge.
A subsequent task involves creating a data
structure to encapsulate the information of a

graph vertex (label and coordinates), and
storing an instance for each vertex in an array
or ArrayList. This collection can then be used in a

simple interactive search such as printing all
labels that have a given prefix, substring, or
length.

Building a collection of objects representing the
vertices also presents an excellent opportunity
when studying sorting. This data has many
natural sorting criteria, which motivates and
demonstrates the power of a comparator-based
sort, where different comparators allow that

same implementation to sort by various criteria.

An especially successful task is associated with a
lab where students implement a generic data
structure that keeps track of the k “best” (by
some criteria, ideally determined by a
comparator) of n values added to the structure.
Bailey (2007) refers to this as a “Best Of”

ordered structure in a lab assignment (p. 275).
Requiring students to find the k best for different
values of k, for different comparison criteria, and
for the larger of the METAL data sets forces
them to make their implementations sufficiently
generic and efficient.
Even in these vertex-only examples, HDX can be

used to visualize the input data and the results
in both map and tabular form. It can be difficult
to look at some numbers in console output and

decide that they appear to be correct. It is much
easier to see that, for example, the directional
extreme points are correct, when viewing in

HDX. Figure 2 shows a small example graph, the
primary highway system in Andorra (the
“Carreteras Generales”). Figure 3 shows a
visualization of the extreme points as written to

a “waypoint list” (.wpl) file. 

Figure 1: METAL’s GRAPHS

Figure 2: METAL’s graph of highways in Andorra
as shown in HDX. The scrollable table on the
right lists all vertices and edges.

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://iscap.info

Among the more advanced assignments
restricted to vertices only that have used METAL
is the computation of the convex hull of the

vertex points. The resulting polygon can also be
visualized by HDX.

Figure 3

Figure 3: A visualization of the results of a
search for the extreme points in the Andorra
graph from Figure 2, shown in HDX. It is much
more quickly evident from the map than from
text output that the answers are correct.

Introducing Edge Data
Students in sufficiently advanced classes
construct and work with a graph structure.
Students can be provided with or be required to
build their own graph data structure and
appropriate support structures to use to store
graph vertex and graph edge labels. For

collapsed format graphs, the edge structures are
non-trivial.

With both vertices and edges available, search
algorithms can be extended to find features such
as the vertex with the highest degree, the

longest and shortest edges, the edges with the
most intermediate shaping points, and the edges
with the most concurrent routes (multiple routes
that share the connection represented by an
edge are separated by commas in the edge
labels in TMG files). The “best of” ordered
structure can also be reused to find the k

longest or shortest or other features of edge
data, reinforcing the importance and power of
building a generic data structure. These can also

be visualized with HDX, using its “near miss
point” (.nmp) format, illustrated in Figure 4,

which shows the 5 longest edges in the Andorra

graph. HDX takes pairs of waypoints from an
NMP file and plots them on the map with an
edge connecting them.

Figure 4: HDX visualization of the 5 longest
edges (without shaping points shown) in the

Andorra graph from Figure 2. The visual

feedback of the map makes it clear that these

are long edges, and likely the correct result.

Figure 4

The original motivation for this project and still a

very successful assignment is “Dijkstra’s Road
Trip,” where students are required to implement

Dijkstra’s algorithm for single-source shortest
paths. Once a graph is in memory, Dijkstra’s
algorithm is used to find the shortest path (in
distance, not time, since METAL does not have
speed limit information) from a starting graph
vertex to a destination graph vertex. The
algorithm itself brings together several topics

from a data structures or algorithms class
including graph operations, priority queues, and
tables. Using METAL data for this adds a real-
world aspect to the assignment, and HDX allows
students to visualize the shortest paths they
have computed. For example, the shortest path
computed from TunEnv/N22 to CG6@CS600 in the

Andorra graph of Figure 2 is shown in Figure 5.
Here, HDX is displaying the contents of a
“waypoint path” (.pth) file produced by a Java

program that implemented Dijkstra’s algorithm.

Figure 5

Figure 5: HDX visualization of the shortest path
computed by Dijkstra’s algorithm from
TunEnv/N22 to CG6@CS600 in the Andorra graph

from Figure 2. The fact that this appears on the
map to be a reasonable route from the source to
the destination gives useful feedback about the
correctness of the result.

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://iscap.info

Breadth-first and depth-first graph traversals

have also been part of assignments using METAL
data and HDX.
In summary, METAL has been used in courses

for vertex and edge search algorithms, including
straightforward searches for a maximum or
minimum value and finding the k “Best Of”
values, finding convex hulls, performing depth-
first and breadth-first traversals, and using
Dijkstra’s algorithm for single-source shortest
paths. In each of these cases, the ability to see

the input data and results on the map can aid in
the understanding of what the algorithm is
trying to compute and to see that the results are
correct.
Details of assignments using METAL, including
handouts, starter code, and sample solutions,

are available to instructors upon request.

6. STUDENT EVALUATION

METAL’s data and visualization capabilities have
enabled class examples and assignments that
students in several of the author’s courses have

found engaging and challenging.
Students in the most recent course to work with
METAL, the author’s Spring 2017 Analysis of
Algorithms course at Siena College, were given
the option to take a short survey about their
experience (Siena IRB #04-17-049). 34
students responded and the results were

overwhelmingly positive. The first three
questions focused on items related to the parts

of METAL presented in this paper. Table 1
summarizes the responses.

 Q1 Q2 Q3

Strongly Agree 8.8% 35.3% 35.3%

Agree 47.1% 47.1% 50.0%

Somewhat Agree 29.4% 11.8% 8.8%

Neither Agree/Dis 8.8% 2.9% 8.8%

Somewhat Disagree 2.9% 0.0% 0.0%

Disagree 0.0% 0.0% 0.0%

Strongly Disagree 2.9% 2.9% 0.0%

Table 1: Student survey responses.

 Q1: “Working with the highway graph data is

more interesting and engaging than working

with other data sets.” Q2: “The ability to view
the highway graph data in map form makes it
more interesting and engaging to me.” Q3:
“The fact that the highway graph data has a
direct real-world connection makes it more
interesting and engaging to me.”

These responses, while a small sample, are very
encouraging. Almost all students agreed to
some extent with the project’s assumptions that

the real-world highway data and ability to

visualize in map form are interesting and
engaging, and much of their agreement was
quite strong. For question 1, the intent was that

they compare using map data against synthetic
examples they had seen in class and
assignments.

7. THE TRAVEL MAPPING PROJECT

This section provides background information

about the Travel Mapping project, which
provides METAL’s raw data.
The TM project (Travel Mapping, 2017) is being
developed and maintained by a group of travel
enthusiasts as a way to track and view their
cumulative travels, inspired by the dormant

Clinched Highway Mapping (CHM) project
(Reichard, 2010). TM’s users submit lists of
highway segments they have traveled, and
those are matched with highway data to produce
statistics and maps of the user’s travels.

Travel Mapping Data

There are many ways to obtain data to construct
graphs of roads and places. For example, the
OpenStreetMap project (OpenStreetMap, 2016)
provides a massive amount of data that could be
adapted. The TM data described below has
proven to be a convenient and appropriate
source of data for METAL’s graphs.

TM highway data consists of thousands of plain-
text files, organized both by region (often an

entire country, but states/provinces/equivalents
for larger countries), and highway system, such
as the U.S. Interstate Highways, the New York
State Touring Routes, or German Autobahns. For

example, the segment of Interstate 90 within
Ohio would be represented as a TM route, and
would be placed in the OH region (Ohio) and the
usai highway system (U.S. Interstates).

Individual routes, or segments of routes within a

region, are each represented by a waypoint file.
These files approximate the route of the highway
using a list of waypoints in the order they occur
from one end of the route to the other. A
waypoint consists of a label, normally the name
of an intersecting road or exit number, and an

OpenStreetMap URL that encodes its

coordinates. The file representing Washington’s
Route 523 in Seattle is shown in Appendix A.
TM highway data is always being expanded,
corrected, and otherwise improved by a team of
volunteers. As of this writing, 33,011 routes
across North America, Europe, Asia, and Africa

have been plotted for a total of 984,592 miles
(1,584,547 km). 450,038 unique locations have
been plotted as starting, ending, intersecting, or

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://iscap.info

other interesting points along these routes. Data

is derived only from permissible, open sources
(http://tm.teresco.org/credits.php). Routes are

normally plotted from map imagery from the
OpenStreetMap project or open government
satellite or topographic imagery. In particular,
since it is unclear whether data created by
selecting points from Google Maps would be
permitted by Google’s terms of use, TM
volunteers take care not to derive project data

from Google Maps or other proprietary imagery.
However, TM and METAL do use the Google
Maps API extensively, in accordance with
Google’s terms of use.

Shaping Points

The granularity of TM data makes it an ideal

source from which to generate METAL graphs.
Intersections to be included as waypoints are
chosen to obtain a reasonably accurate
approximation of the route. Less significant
intersections that would add memory and
computational costs to the data processing,

database, and mapping capabilities without
much improvement in accuracy of the route are
omitted. Choosing only major intersections
usually leads to routes with a sufficiently
accurate approximation. Consecutive waypoints
are rarely more than a few miles apart and are
often closer.

In situations such as limited-access routes with
long sections between interchanges or curvy
routes, the usual points might not provide

sufficient accuracy. Shaping points, invisible to
TM users other than as improvements in map
accuracy, can be added to the route (as regular

waypoint entries whose labels begin with ‘+’) to
improve its approximation. For example, Figure
6 shows the section of Interstate 90 in
Massachusetts between interchanges 2 and 3, a
limited-access road through a mountainous
area. The direct distance between the two
endpoints (shown by the straight purple line in

the figure) is 28.3 miles, but the actual road
distance is 30.3 miles. By adding 9 shaping
points, the segment is represented more
accurately by 10 shorter, but still straight line,
segments totaling 30.1 miles.

TM data and more details about its organization
are available in its public repository at
https://github.com/TravelMapping/HighwayData.

Figure 6

Figure 6: The route between interchanges 2 and
3 of I-90 in Massachusetts demonstrating the
use of shaping points to improve the
approximation of the road. The straight purple
(darker, if viewing in greyscale) line indicates
the direct path between the interchanges. The

pink (lighter, in greyscale) path includes 9
intermediate shaping points.

8. CONSTRUCTING GRAPH DATA

TM raw data can be interesting for educational
use, but its real value arises once this data has

been used to produce METAL’s graphs. The basic
idea remains similar to that used in the
predecessor project (Teresco, 2012): the
waypoints from each route become graph
vertices, and the connections between
consecutive waypoints in a route become graph
edges. This section provides details about that

process for completeness, but the typical METAL
user would only be concerned about the graphs

that result from this process.

Graph Construction Process
Graph generation is integrated into TM’s site

update process, which populates the database
used by TM’s web front end with information
gathered from highway and user data files.
Each graph vertex is labeled based on the route
name and the waypoint label. The graph vertex
corresponding to the first line for Washington
523’s file in Appendix A would be named
WA523@WA99, and its coordinates would be

taken from the URL. The edge representing the
connection between the first two lines in the
same file would be labeled with the route name,
WA523. The length of the edge is not computed

or stored at graph creation time, as it can be
computed when needed using the coordinates of
its vertex endpoints.

Waypoints on intersecting routes should share a
single graph vertex for their junction, so a

search is performed as each waypoint is
processed to find any existing vertex with the
same coordinates. If a vertex already exists, this

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://iscap.info

waypoint is added to that vertex. The efficiency

of this search is greatly improved by storing the
waypoints in an adaptive quadtree structure
(Samet, 1985).

Some highways overlap (i.e., have a
“concurrency”) for part of their routings. For
example, part of Washington’s Capital Beltway
carries designations of both I-95 and I-495.
Corresponding waypoints at each location along
a concurrency, like intersecting points, should

share a single graph vertex. Graph edges along
a concurrency should also exist just once, but be
designated as carrying all the routes along that
concurrency.

Intersection and concurrency detection rely on

the coordinates being precisely the same in the
source data. Work is ongoing by TM volunteers,
using both automatic and manual techniques, to
align points where this is not the case.

Graph vertex naming is complicated by locations
that have multiple corresponding waypoints due

to intersections and concurrencies. Each graph
vertex has a “failsafe” label, built by
concatenating route/waypoint label information
from each concurrent waypoint, separated with
‘&’ characters. Simplification rules then produce

a “canonical” label to reduce the number of

excessively long labels. Some examples are
shown in Appendix B. There is no harm in long,
complicated labels other than that the simpler

labels are easier to type and display.

Waypoint labels can be repeated in different
regions that contain parts of the same route. I-95

along the U.S. east coast has 9 points labeled
“1” for an exit numbered 1 (the route’s exit

numbers reset at state boundaries). To
differentiate vertex labels and maintain vertex

label uniqueness when the canonical labels
conflict, the region can be appended. For
example, I-95’s Exit 1 in Georgia has vertex label
I-95@1|GA.

In the end, all vertices have unique labels, and
the majority of complicated failsafe labels are

automatically simplified.

Collapsing Shaping Points
An important new feature of METAL is its

improved handling of the shaping points from
TM data during graph generation. Previously,
shaping points were treated the same as any
other, except that the visualization tools
(Section 4) would hide them on the map. This
original “simple” format remains supported, but

each graph is also provided in a “collapsed”

format.

Since shaping points are not in themselves

useful or meaningful points, just accuracy
improvements, the collapsed format in METAL
treats them as points that help define the edge
between two vertices with more accuracy. Using
the example from Figure 6, the edge connecting
the endpoints of the long, curvy segment, with
vertex labels I-90@2|MA and I-90@3|MA, includes

the list of latitude-longitude pairs for the shaping
points along that path.
The in-memory graph is first built with shaping
points represented as graph vertices. The
transformation of this simple graph into a

collapsed graph requires a single traversal of the

graph vertices. Since shaping points are not
intersections of routes represented in the TM
data (they would be regular waypoints in that
case), graph vertices that represent shaping
points must have exactly two incident edges. A
data error is flagged if this is not the case. To

collapse the vertex representing the shaping
point, that vertex and its incident edges are
removed from the graph, and a new edge is
created connecting the vertices at the opposite
ends of the removed edges. The coordinates of
the shaping point being removed are added to
the list of intermediate points along that edge.

The simple graph generated in the area shown in
Figure 6 has a vertex labeled I-90@+X12|MA that
represents the shaping point between I-90@3|MA

and I-90@4. When the vertex I-90@+X12|MA is

visited during the collapse procedure, that
vertex, and the edges that connect it to I-

90@3|MA and I-90@4 are removed, and a new
edge is introduced with I-90@3|MA and I-90@4 as

endpoints, with the coordinates of I-90@+X12|MA

attached to that edge’s list of intermediate
points.

Care is taken to ensure the ordering of

intermediate points remains correct as vertices
are collapsed during the conversion process.
Even though the graph is undirected, the order
of the intermediate points must remain
consistent. The edges being removed could each

have a list of intermediate points from previous

collapsing steps that need to be combined with
the new point from the vertex being eliminated.
Fortunately, all of this is handled during graph
creation, and is not the concern of students or
instructors using this data.

Graph Data File Formats

Once the in-memory graph construction is
complete, the overall master graphs and

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://iscap.info

hundreds of subgraphs are created and written

to files. The “Travel Mapping Graph” (TMG) file
format is straightforward, consisting of four
sections:

1. A single header line: the string TMG, a
version number, and the string simple or
collapsed to specify which graph format is

expected.  

2. A line containing the number of vertices |V|

and edges |E| in the file.  

3. |V| lines specifying vertices, each consisting of

a waypoint label and the point’s coordinates.

4. |E| lines specifying the edges, each consisting

of two vertex numbers (determined by their
order in the vertex list section of the file) and an
edge label specifying the routes that traverse
this edge. For a collapsed graph, the line can

then include an even number of floating-point
values, that taken in pairs, are the latitudes and
longitudes of any shaping points that have been
collapsed into this edge.

For example, an excerpt of the collapsed format
graph file that includes all plotted highways

within the state of Nebraska is shown in
Appendix C. One edge shown includes
coordinates for one shaping point and another
includes coordinates for two shaping points.
Note that the simple format graph can be

represented in a collapsed file format with no

edge shaping points. The distinction is made to
allow those loading the file to be able to choose
an appropriate data structure (one that can
store those shaping points, or not).

9. CONCLUSIONS AND FUTURE WORK

New features of METAL described here include a
greatly expanded and higher quality set of graph
data files, graph data files provided in both the
simple and collapsed formats, and a new version
of HDX with significant user interface,
functionality, and efficiency improvements.
These enhancements, along with an expanded

set of classroom-tested student tasks, make

METAL an easy-to-adopt supplement to
computing courses, especially data structures
and algorithms.

The survey results, while not a formal study,

provide encouraging feedback that students find
the project interesting and engaging. More
formal studies are planned to quantify METAL’s
effectiveness as a teaching tool.

Ideas for new class examples and assignments

that could use METAL in the future include
quadtree data structures and algorithms,
sorting, finding connected components, graph

partitioning, spanning trees, and any number of
more advanced graph algorithms. Usage to date
has only scratched the surface of METAL’s
potential to supplement computing curricula
from the K-12 and undergraduate
computing/information technology literacy
audiences, to introductory programming, right

up to advanced undergraduate and graduate
level courses.
The scope and quality of graph data improves
every time the underlying TM data improves.
Each time METAL is used in a course, that use is
expanded and improved based on the previous

course’s results. New features are being added
and other improvements are being made to
HDX. An especially exciting development, to be
described separately, is the implementation
currently underway of interactive algorithm
visualization capabilities using METAL data and
HDX.

10. ACKNOWLEDGEMENTS

Recent work on METAL was made possible in
part due to the support of Summer Scholars
2017 Program, Center for Undergraduate
Research and Creative Activity (CURCA), at

Siena College.

Thank you to the TM and CHM volunteers for the
use of the highway data they have constructed.
Some of the code in HDX is based on CHM
programs written by Timothy Reichard and TM

programs by various contributors. Many
colleagues and former students made
contributions and suggestions, especially Razieh
Fathi. Thank you mostly to the students in
courses at Mount Holyoke, Saint Rose, and
Siena, for their patience and feedback.

11. REFERENCES

Bailey, D. A. (2007). Java Structures, Data
Structures in Java for the Principled

Programmer. √7 edition.,
http://www.cs.williams.edu/~bailey/JavaStr
uctures/.

Naps, T. L., Rößling, G., Almstrum, V., Dann,
W., Fleischer, R., Hundhausen, C.,
Korhonen, A., Malmi, L., McNally, M.,
Rodger, S. & Velázquez-Iturbide, J. A.
(2003). Exploring the role of visualization
and engagement in computer science

http://www.cs.williams.edu/~bailey/JavaStructures/
http://www.cs.williams.edu/~bailey/JavaStructures/

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 9
http://iscap.info

education. Publishing in ACM SIGCSE

Bulletin. SIGCSE Bulletin Inroads, 35(2),
131–152.

Openstreetmap Contributors. (2016).

Openstreetmap.
http://www.openstreetmap.org/.

Reichard, T. (2010). The Clinched Highway
Mapping project., http://cmap.m-plex.com/.

Samet, H. (1985). A top-down quadtree
traversal algorithm. Publishing in PAMI.
IEEE Transactions on Pattern Analysis and

Machine Intelligence., PAMI-7(1), 95-98.

Shaffer, C. A., Cooper, M. L., Alon, A. J. D.,
Akbar, M., Stewart, M., Ponce S. & Edwards,
S. H. (2010). Publishing in TOCE. ACM

Transactions on Computing Education, 10(3),

9:1-9:22.

Teresco, J. D. (2010). A Dijkstra's algorithm
shortest path assignment using the Google
Maps API (poster abstract). Publishing in
JCSC. Journal of Computing Sciences in
Colleges (CCSCNE 2010), 25(6), 253-255.

Teresco, J. D. (2012). Highway data and map
visualizations for educational use. Publishing
in SIGCSE. Proceedings of the 43rd ACM
technical symposium on Computer Science
Education (SIGCSE ’12), 553-558.

Travel Mapping Contributors. (2017). The Travel
Mapping project. http://tm.teresco.org/

.

http://www.openstreetmap.org/
http://cmap.m-plex.com/

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4325
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 10
http://iscap.info

Appendix A: SAMPLE TM WAYPOINT FILE

WA99 http://www.openstreetmap.org/?lat=47.734121&lon=-122.345123

I5 http://www.openstreetmap.org/?lat=47.733984&lon=-122.324481
WA522 http://www.openstreetmap.org/?lat=47.733753&lon=-122.292359

This file is named wa.wa523.wpt, represents Washington State Route 523, is part of the WA region (the
U.S. state of Washington), and is part of the usawa system (the Washington State Highways).

Appendix B: EXAMPLES OF VERTEX LABEL SIMPLIFICATIONS

METAL graph vertices are initially assigned failsafe labels as described in Section 8. A series of
simplification patterns are applied to convert lengthy failsafe labels into shorted canonical labels.
Three examples are given below.

• In Canada, Yukon Territory routes 1 and 3 intersect in Haines Junction. YT1 has a waypoint labeled

YT3, and YT3 has a waypoint labeled YT1. These are combined to form the failsafe label

YT1@YT3&YT3@YT1. A simplification rule then renames this as YT1/YT3.

• In Mittenwald, Germany, European route E533 and German route B2 are concurrent, and intersect

with a street named Alpenkorpsstraße, each with a point labeled AlpStr. These are combined to form
the failsafe label E533@AlpStr&B2Wei@AlpStr, which is simplified to E533/B2Wei@AlpStr.

• In Waipahu, Hawaii, Interstate highway I-H1 has an interchange labeled with its exit number, 5,
where it intersects with Hawaii route 76, which uses the label I-H1/750 and Hawaii route 750, which
uses the label I-H1/76. These are combined to form the failsafe label I-H1@5&HI76@I-H1/750&HI750@I-

H1/76. One of the newest simplification rules renames this as I-H1/HI76/HI750.

Appendix C: SAMPLE METAL GRAPH FILE

This following is an excerpt from the METAL graph TMG file NE-region.tmg. This graph includes data

from all highways in the U.S. state of Nebraska that are plotted in TM.

TMG 1.0 collapsed
3069 3414
US385/SD79@NE/SD 43.000818 -103.224192
NE2@SD/NE&NE71@NE/SD&SD71@NE/SD 43.001462 -103.653731
NE2/NE71@ToaRd_N 43.00094 -103.641822
US83@NE/SD 42.998496 -100.573397
... 3063 more vertex entries omitted ...
KS99/NE99@KS/NE 40.000923 -96.350698
NE65@KS/NE 40.000778 -96.16274
2941 2927 NE89
2984 2920 NE105
2927 2919 NE89
1468 1387 NE71 41.261937 -103.63811
2429 2296 US83 40.565463 -100.629981 40.640897 -100.632395
... 3408 more edge entries omitted ...
369 364 US20

The complete file has 3069 lines representing vertices, followed by 3414 lines representing edges.
The NE71 edge includes coordinates for one shaping point, and the US83 edge includes coordinates for

two shaping points.

