
2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4356
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://iscap.info

Motivating Students through

Educational Software Development

Laura Felice

lfelice@exa.unicen.edu.ar

María Virginia Mauco

vmauco@exa.unicen.edu.ar

María Carmen Leonardi
cleonard@exa.unicen.edu.ar

Computer Science Department

Facultad Ciencias Exactas
Universidad Nacional del Centro de la Pcia. De Buenos Aires

Tandil, 7000, Argentina

Abstract

Educational software helps to motivate and improve the teaching / learning process. This is even more

important when the software is developed by students for other students. By teaching students to
combine in an efficient way the concepts learnt in Logic course and Algorithm Design course, we
defined the ´Educational Tools Development´ project. The project has produced many innovative
ideas and solutions improving academic performance of students. This paper presents a set of visual,

interactive and didactic tools for an introductory logic course developed in the context of the
mentioned project. The tools were developed by students of the 2nd year of a Computer Science
career as final work of two courses, one that introduces concepts of Logic for Computer Science and
another one that teaches the basis of algorithm design techniques, allowing them to integrate and
deepen the contents of both.

Keywords: Educational Software, Propositional Logic, First Order Logic, Teaching Resources.

1. INTRODUCTION

In basic programming courses, students learn by
providing solutions to traditional problems linked

with simple data structure and simple logic. In
addition, most of Computer Science curricula
include basic courses of Logic. In these courses,
students have to solve many exercises to gain
practice in formalisms.

The use of didactic tools is a great contribution

when it is involved in the teaching/learning
process, with no much time for the
understanding of the tools. The Undergraduate

Degree Program in Systems Engineering
includes an introductory course on Propositional
Logic and First Order Logic (FOL)
(http://ccomp2.alumnos.exa.unicen.edu.ar). At
first, the students have to make their exercises
manually, which makes it difficult to detect and

correct errors. Thus, students consider these

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4356
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://iscap.info

kinds of courses less attractive and more difficult

than others. Using educational tools, the
feedback is immediate, so the motivation can
help to improve the teaching/learning process.

For these reasons, it was considered to build and
implement tools which can also help students
see incompleteness and inconsistencies in their
exercises. These tools must be adjusted to the
notation and the methodology taught in the
course. Also, the tools must be simple and
intuitive in their use.

In addition, the curriculum includes a course of
Algorithm Design
(http://aydalgor.alumnos.exa.unicen.edu.ar)
that gives the students the fundamental
concepts of good programming practices. They

are Recursive Programming, Computational
Complexity, Abstract Data Types, and Algorithm
Design Techniques. To make programming
techniques more practical and useful to students
once they complete their studies, several
projects related to real-world problems are
offered to them. Therefore, students learn by

producing concrete and realistic solutions. These
solutions involve the use of important concepts
related to good practice of programming such as
Algorithm Design techniques and Computational
Complexity.

Students may attend courses on Logic and

Algorithm Design in the second year of the
curriculum. In this context, teachers in charge of

the courses proposed the creation of projects
developed by students that involve contents
from both of the courses. Within this framework,
several didactic, visual and interactive tools

were developed in order to fit the contents, the
notation and the methodology followed in the
course of Logic, and that are easy and intuitive
in its use (Cicconi  Fernández Cocirio, 2014),

(Dahl  Fujii, 2016), (Ferrante, 2009), (Kiehr 

Re Medina, 2012), (Maggiori  Gervasoni,

2012), (Ruau  Tosini, 2015), (Santillán Cooper,
Horquin  Covelli, 2017). These tools are used

as a support in the teaching / learning process,

both by teachers and students of the Logic
course.

In this paper, the developed tools are described
briefly. Each tool allows to experiment with
some of the contents learnt in the Logic course.
Also, more than a tool was developed for the

same topic in order to have a complementary
and different approach.

This paper is structured as follows. Section 2
describes briefly the courses involved in this

proposal. In Section 3, the team selection of the

students is justified. Section 4 presents the
description of the main tools. In Section 5 we
briefly describe the use experience and the tools

development, and finally, some conclusions are
presented in Section 6.

2. COURSES INVOLVED

In this section, we briefly describe the main
contents of two courses linked to the tools

developed. Both courses are included in the first
semester of the second year System Engineering
curriculum career of Universidad Nacional del
Centro in Argentina (www.exa.unicen.edu.ar).

Logic course

This course covers introductory concepts to the
Propositional Logic and First Order Logic (Ben-
Ari, 2012). The contents of the course are
oriented to provide the students the
fundamental logic for computer science. They
are: syntax, semantic, deduction and
demonstration methods, correction results and

completeness, satisfiability and validity,
formalization of natural language specifications.
In addition, the fundamentals for logic
application in computer science, such as
software verification, logic programming,
database, are introduced. In each class, the
work with the students is complemented by

interactive illustrating with exercises developed
by students and guide teachers. There is a tool

for most of the topics. These tools were
developed by other students that completed the
course.

The classes are offered to approximately one
hundred undergraduate students (second year)
from Computer Science department. All of the
students know some computing basics; they are
learning programming techniques to improve the
quality of programs.

Algorithm Design Course
To understand a problem in computational terms
and try to write a program to solve it is the first
obstacle students must confront when facing

real-world problems. It is common for the
students to find it difficult to separate the
necessary and unnecessary details of the

problem description. Therefore, the first obstacle
the students must deal with is to obtain an
abstract view of the problem.

The main objective of this course is focused on
the introduction of main topics related to

software development, such as abstract data

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4356
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://iscap.info

types, component libraries development, and the

reusability of the software developed (Cormen,
Lieserson  Rivestl, 2009), (Aho  Ullman,

1995).

To make this task efficient, it is necessary to

learn good practices in the development of
software. It is required that the programmers
(students) work with basic design techniques
like Divide and Conquer, Dynamic Programming
and Greedy Methods and heuristics. For this kind
of courses it is essential to create illustrative

examples.

For the last years, teachers have promoted the
creation of different types of students’ work to
support these objectives. They include not only

solving real-world problems, but also the
development of educational tools related with

the Logic course. Several students are part of
the project called ´Educational Tools
Development´ whose main objective is the
stimulation of the learning of Logic and the
development of tools.

3. STUDENT TEAMS SELECTION

For the past years, Educational Software is being
used by traditional courses in many careers of
Computer Science. This was a motivation to
design this proposal: to stimulate student
teams to develop this kind of tools which should

follow the Logic course methodology.

Beginning in 2009, student’s projects were
migrated from a traditional course project to the
software development to create tools to assist
the learning/teaching of Logic concepts using
efficient techniques of Design Algorithm.

Students learn the importance of a systematic
approach in the process of developing robust
tools, how to interact with mentor teachers and
how to test systems. Emphasis is placed on
developing skills and knowledge in technical
areas like the programming language and
programming environment. In addition to

technical skills, students develop critical
thinking, communication, and teamwork skills.

By working on this kind of project, students
learn the appropriate skills for filling meaningful
roles in the whole development.

The students who develop these tools are
selected according to their performance in the
courses involved in this project. The
development of these tools is the first large-
scale project they carry out in the career. Each
tool has been developed by two or three

members in a group with a mentor teacher as a

guide. The estimated time of tools development
is approximately two months considering groups
of two developers.

4. THE TOOLS

All the tools described in this section were
developed by students finishing the second year
of the career. Each tool involves topics from
Logic and Algorithm Design courses. They are

didactic, visual and interactive tools that use the
same notation, methodology and contents of the
Logic course. Thus, the use and the facility to
work with them are easier and more natural.

The tools are open source with GNU GPL (GNU,

2017) license. C++ is the language for the
implementation, following an Object Oriented
design. Computational Complexity is a crucial
aspect that students have to take into account.
The implementation of each tool is based on this
aspect, and different algorithms were analyzed
in order to reach good time in the program

execution. Qt framework (Blanchette &
Summerfield, 2008) is the GUI used for the
development of the graphics interface. The
interfaces were first implemented in Spanish, as
it is the student’s mother tongue language, and
some of them were later translated to English.
The development of these tools was a hard

challenge because students have to deal with
frameworks they have never used before.

In the following sections we describe some
selected tools and their functionality.

SAT and DP Solver
SAT (Boolean Satisfiability Problem) (Santillán
Cooper et al, 2017) was developed to determine
the satisfiability of a set of clauses of the
Propositional Logic. Also, it was developed to
show the facilities offered by Propositional Logic
to model different problems. It is very important

at this point of the career to know how the
Propositional Logic can help to solve many
problems. This tool allows the users to
experiment with two real problems, Graph

coloring and N-Queens problem, verifying that
both can be solved like a Boolean satisfiability
problem (Kelley, 1997). Figure 1 shows one

interface window for N-Queens problem.

DPSolver was thought as a didactic and
interactive tool that gives support to the learning
of Propositional Logic. In particular, it was
accomplished with the application of Davis

Putnam algorithm to a set of clauses to

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4356
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://iscap.info

determine its satisfiability. DPSolver allows

computing the conjunctive normal form for any
formula of the Propositional Logic. Also, it allows
working with semantic entailment (Cicconi 

Fernández Cocirio, 2014).

Figure 1. SAT for N-Queens problem

YAT3
YAT3 tool (Yet Another Truth Table Tool) (Ruau
 Tosini, 2015) allows working with Refutation

Trees, both in Propositional and First Order
Logic. In a Logic course, it is common the tree
construction from logic formulas to determine
valid consequences and formula validity. Thus,
the tree construction is made applying a set of

rules until each branch of the tree can be
classified as close or not.

The tool considers three ways to make the
refutation tree: from the user given formula, the
refutation tree is computed and shown; from the
user given formula, refutation tree is computed

one rule at a time; starting from the user given
formula, the user itself decides the way to
construct the tree, choosing the rule to apply in
each step. Thus, this last way is similar to the
work that students do in paper and pencil.

FOLST and LogicChess
FOLST (Mauco, Maggiori, Gervasoni, Ferrante 

Felice, 2012) and LogicChess (Kiehr  Ré

Medina, 2012) are didactic, visual and

interactive tools that give support for syntactic
and semantic evaluation of FOL formulas in
user-defined models over the domains provided
by each tool.

FOLST provides the implementation of two
frames: Farm and World that allow the definition

of different models. The Farm frame (Figure 2)

consists of an image of a farm where different

animals (pigs, ducks, cows, cocks) in different
places (in the forest, on the grass, in the air, in
the farmyard) may be added. Each animal has

attributes (species, location, is sleeping the
action is doing), and predicates allow the
formalization of real information in this context.
The frame provides eleven unary predicates,
such as IsACow(x), IsOnTheGrass(x), and
IsSleeping(x), and two binary ones,
SamePlace(x, y) and SameSpecies(x, y). In

addition, there is a function to return to the
closest given animal (THECLOSEST(x)). The
World frame (Figure 2) consists of a map divided
into continents where cities (capital/non capital
ones) may be located and connected. Six unary
predicates are defined, such as IsCapitalCity(x),

IsInAmerica(x), IsInAsia(x), and five binary
ones, as SameContinent(x, y) and
ThereIsAPath(x, y). The function
THEFARTHEST(x) returns, for a given city, to the
farthest one.

Figure 2. FOLST for Farm frame

Formulas for a selected frame may be written in

the editor window which shows the logical
connectives and quantifiers considered by the
tool (Figure 2).

The tool verifies if each formula is syntactically
correct in connection with a context-free
grammar defined to recognize FOL well-defined

formulas. This grammar was implemented using
the free tools Flex, for lexical analysis (Paxson,
2012), and Bison, for syntactic analysis (Donelly
& Stallman, 2017) In case of an error, FOLST
reports the type of mistake the user has made
so that s/he could detect and correct it easily.
This is important from a didactic point of view

since the users are not only warned about the
error but they also get some clues to correct it.

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4356
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://iscap.info

For example, Figure 2 shows three formulas

written in a model based on the frame Farm.

The tool informs in each case which is the error

in the definition of the formula; errors could be
independent of the frame used to instantiate the
model (a parenthesis missing as in Formula 1, or
the presence of a free variable as in Formula 2)
or they could be specific for a particular frame
(the use of an undefined predicate as in Formula
3). This figure also shows that the tool gives

users the possibility to work with many different
models simultaneously. For each formula in the
editor window, FOLST computes its truth value
in a model when the user selects the option
Verify formula. The possible results are Valid, in
case the formula is true in the considered model,

and False otherwise. The user may change the
model, for example by adding some cities, if
working with the World frame, and may ask the
tool to recalculate the formula truth value. Five
formulas were defined to be evaluated in this
model. As all of them are syntactically correct,
the tool shows for each one the corresponding

truth value. In addition, it is important to
emphasize that FOLST allows saving/loading
models and formulas.

LogicChess (Kiehr  Re Medina, 2012) allows

the user to write formulas in the editor window
checking them to determine if they are
syntactically correct. Correct formulas may be

evaluated in user-defined models. Each model

represents a chessboard composed by chess
pieces (rook, knight, queen, king, etc) which
have attributes such as color (black, white),
type, and position. Users may define a finite set
of models in an easy way by adding, deleting or
modifying model components.

The tool provides fifteen predicates classified in:
identification predicates such as isPawn(piece),
isKnight(piece), etc.; position predicates as for
example sameRow(piece1, piece2), isInL(piece1,
piece2); and distance predicates such as
distance(piece1, piece2, number),

freePath(piece1, piece2) Using the elements
presented in the previous paragraph, in an

analogous way to what FOLST does with farms
and world maps, LogicChess allows students to
introduce FOL formulas and perform on the fly
modifications of the model. After modifying the

chessboard, the truth value of the formulas is
updated. The same happens when a formula is
modified. In that way, users can modify both
model and formulas having an instant
verification of its satisfiability.

CLAUSULA and CLPROVER

Clausula (Ferrante, 2009) (Mauco & Ferrante,
2009) allows students and teachers to
experiment with arbitrary FOL sets of clauses in

order to determine their (in)satisfiability.
Clausula implements classic and fundamental
methods of FOL such as the Resolution method
for clauses (Ben Ari, 2012). Also, the tool gives
the possibility to calculate the most general
unifier of a pair of literals, using the Unification
Algorithm proposed by Robinson. Regarding the

(in)satisfiability determination of a set of
clauses, the tool detects if the set corresponds
to a Program Logic or it is an arbitrary set, so as
to apply the adequate strategy.

Clprover (Mauco, Moauro & Felice, 2010) is the

other tool developed to determine the
(in)satisfiability of FOL clauses, with the
possibility to work from arbitrary formula (Figure
3). Clprover provides the factorization and
subsunction of clauses.

Figure 3. Clprover. Resolution Method

TheM

The THeM tool (Teaching Herbrand Models)
(Dahl  Fujii, 2016) allows to determine the

(in)satisfiability of a set of FOL clauses working
with Herbrand Models. An algorithm that shows
the procedure made manually by students was
implemented as part of the didactic tool used to
solve this kind of problems. First, a set of
defined clauses is generated. Then, the tool

searches the existence of Herbrand Models for

the set (Figure 4).

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4356
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://iscap.info

Figure 4. TheM. Herbrand Models

5. THE USE EXPERIENCE AND THE TOOLS

DEVELOPMENT

The tools presented in the previous section are
used in the Logic course as support software in
class and to complete homework. They are used
by teachers and students. The students have
reported positive experiences in the use of the

tools. About one hundred students per year
attend Logic course. They manifested the
easiness in the use, and make the verification of
the exercises results. Thereby, teachers make
sure that the student participation in class is
more active and more productive, having good

evaluation results. Nowadays, there is a tool for

each fundamental concept addressed in the
course.

Advantages and disadvantages that students
have expressed during their practices using the
mentioned tools have greatly influenced to

continuously work to enhance the proposal. It
has been reported an improvement in the
performance of the students during the course.
In addition to the improvement in the academic
performance, students involved themselves as
active users and testers which allow them to
provide new ideas to enhance the tools.

These are some of the tools developed by
students that were described in this paper.

- DPSolver and SAT for Propositional Logic

and their applications,

- YAT3 for refutation trees in Propositional
Logic and First Order Logic,

- FOLST and LogicChess for semantic in
First Order Logic,

- THeM for Herbrand Models,
- Clausula and ClProver for resolution in

First Order Logic.

All the tools were implemented in C++

programming language using the framework QT
for the graphic interfaces. The designed solution
and the graphic interface are independent,

therefore encouraging reuse and simplifying
maintenance.

The tools are free software and they use
platform-independent technologies, so that
versions for other platforms could be released.
When using free software in the

teaching/learning process, students have the
possibility of using and sharing the resources it
offers, and they are encouraged to have a look
at the code, what makes it even more
interesting since these tools have been
developed under the same technologies they are

learning at the time.

6. CONCLUSIONS

This paper presents a project aimed at students
in the second year of a Computer Science
career. The main objective of ´Educational Tools

Development´ project is the design and
implementation of didactic tools for an
introductory Logic course used as support in the
teaching/learning process. The developed tools
use the same notation and the methodology that
Logic course follows to introduce the course
contents.

A formal and systematic evaluation is being

carried out by teachers and the first results are
very encouraging, so, there is much enthusiasm
for further development of tools.

For the students who developed these tools, the
contribution involved three aspects:

- a first experience in the development
of complete software for a real user,
from the requirements stage to the
implementation,

- learning new technologies and putting
into practice the knowledge and the
methodology acquired in the Design
Algorithm course,

- the integration and more deep
comprehension of the logic content
involved in the tools functionality.

Another contribution for these students was that

they presented the tool during a class of the

Logic course. In this way, they had a first

experience of oral presentation to a complete

course, allowing an informal discussion with the

students who were motivated to see that

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4356
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://iscap.info

students only slightly more advanced than them

were able to develop a complete tool.

In addition, teachers of both courses encouraged

students to present the tools in national

competitions for students and in national and

international conferences. This allowed students

to have a first experience in preparing and

presenting a conference paper.

It is considered that the development of a
transversal project for two courses, such as the
one presented in this paper, allows students to
integrate and deepen the contents of both.

Following the completion of this project, another
important observation is that students visualize

the courses as part of a process that
incrementally will form them in their career.

7. ACKNOWLEDGEMENTS

The authors give thanks to the students and
teachers involved in the ´Educational Tools
Development´ project for their dedication and
their hard work. In addition, the authors
acknowledge the students that are using the
tools providing a feedback to improve the

teaching/learning process.

8. REFERENCES

Aho, A., Ullman, J (1995). Foundations of
Computer Science. C Edition. Computer
Science Press.

Ben-Ari, M. (2012) Mathematical Logic for
Computer Science. Springer Verlag London.

Blanchette, J., & Summerfield, M. (2008).
C++GUI Programming with Qt 4 2nd
Edition.Prentice Hall Open Source Software
Development Series.

Cicconi, D., Fernández Cocirio, M. (2014).
DPSolver: Una herramienta interactiva para
la implementación del algoritmo de Davis
Putnam. Simposio de Trabajos Estudiantiles,

2º CoNaIISI, Argentina.

Cormen, T.; Lieserson, C.; Rivest, R. (2009).
Introduction to Algorithms. Ed. The MIT

Press.

Dahl, J., Fujii, D. (2016). THeM: Una
Herramienta Didáctica para Modelos de
Herbrand. Simposio de Trabajos

Estudiantiles, 45ºJAIIO, Argentina. 232-141.

Retrieved June 2017 from
http://45jaiio.sadio.org.ar/sites/default/files/
EST-1635.pdf.

Donnelly, C. & Stallman, R. (2017) Bison Version
1.25: The YACC-compatible Parser
Generator. Retrieved June 2017 from
http://dinosaur.compilertools.net/bison/in
dex.html.

Ferrante, E. (2009). Clausula: Herramienta
Didáctica para la Enseñanza de Lógica de

Predicados de Primer Orden. Simposio de
Trabajos Estudiantiles, 38ºJAIIO, Argentina.

GNU General Public License (GPL). Retrieved

June 2017 from
http://www.gnu.org/licenses/gpl.html

Kelley, J. (1997). The Essence of Logic, Prentice

Hall.

Kiehr, A., Re Medina, M. (2012). LogicChess:
Herramienta Didáctica para la Ejercitación en
Lógica de Predicados de Primer Orden.
Simposio de Trabajos Estudiantiles,
41ºJAIIO, Argentina. 394-404. Retrieved
June 2017 from

http://41jaiio.sadio.org.ar/sites/default/files/
19_EST_2012.pdf.

Maggiori, E., Gervasoni, L. (2012). FOLST: Una
Herramienta Didáctica para la Lógica de
Predicados de Primer Orden. Primer Premio
en el Concurso de Trabajos Estudiantiles,
41ºJAIIO, Argentina. 405-415. Retrieved

June 2017 from
http://41jaiio.sadio.org.ar/sites/default/files/
20_EST_2012.pdf

Mauco, M.V., & Ferrante, E. (2009). Clausula:
A Didactic Tool to Teach First Order Logic.
Publishing in ISECON 2009, Information

Systems Education Conference, Washington
DC. USA.vol 26: §4142.

Mauco, M.V., Maggiori, E., Gervasoni, L.,

Ferrante, E., & Felice, L. (2012). FOLST: A
Didactic Tool to Support First Order Logic
Semantics Learning. Publishing in
Proceedings of International Conference on

Future Computers in Education. Shangai.
China. Lecture Notes in Information
Technology, Vols.23-24, 302-307.

2017 Proceedings of the EDSIG Conference ISSN: 2473-3857
Austin, Texas USA v3 n4356
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://iscap.info

Mauco, M.V., Moauro, L & Felice, L. (2010). Una

Herramienta Didáctica para la Enseñanza de
Lógica de Predicados de Primer Orden.
Publishing in Congreso Iberoamericano de

Educación Superior en Computación (CIESC
2010).

Paxson, V. (2012) Flex - Version 2.5: A Fast
Scanner Generator. Retrieved April 2012
from
http://dinosaur.compilertools.net/flex/flex.ps

Qt:Documentación oficial sobre el entorno

gráfico. http://doc.qt.io

Ruau, K., Tosini, J.M. (2015).
Yet.anotherTruth.Tree.Tool: Una

herramienta didáctica sobre Árboles de

Refutación. Simposio de Trabajos

Estudiantiles, 44ºJAIIO, Argentina. 63-71.
Retrieved June 2017 from
http://44jaiio.sadio.org.ar/sites/default/files/

est63-71.pdf.

Santillán Cooper, M., Horquin, E., Covelli, T
(2017). SAT: Una Herramienta Didáctica
para el problema de la satisfacibilidad.
Segundo Premio en el Concurso de Trabajos
Estudiantiles, 46ºJAIIO, Argentina. 62.71.
Retrieved September 2017 from

http://www.clei2017-
46jaiio.sadio.org.ar/sites/default/files/Mem/
EST/est-06.pdf

http://doc.qt.io/

