
2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 1

http://iscap.info

Querying Bitcoin Blockchain Using SQL

Kwok-Bun Yue

yue@uhcl.edu

Karthika Chandrasekar
Chandrasekark@uhcl.edu

Hema Gullapalli

GullapalliH2010@uhcl.edu

Department of Computing Sciences

University of Houston-Clear Lake
Houston, TX 77058, U.S.A

Abstract

Bitcoin is the first major decentralized cryptocurrency with wide acceptance. A core technological
innovation of Bitcoin is blockchain, a secure and pseudonymous general ledger that stores every Bitcoin

transaction. Blockchain has received enormous attention from both the commercial and academic
worlds, and it is generally recognized as the enabling technology of the Internet of Value (IoV), in which
securely stored valuable entities are intended to be transferred as easily as information. Current

blockchains are designed as special kinds of Online Transaction Processing (OLTP) systems, but not
Online Analytical Processing (OLAP) systems. Data analytics by querying the blockchain directly can be
ineffective. To incorporate the increasingly important blockchain technology into Information Systems
curriculum, one approach is to store the blockchain in a SQL database, thus allowing fast data access

and an easier understanding of the underlying concepts. This paper describes our experiment of using
three different methods for accessing Bitcoin data from SQL databases. It elaborates an assignment of
querying a Bitcoin’s SQL database in an undergraduate database course. The paper discusses our
experience on using SQL databases for blockchain analysis, elaborates the characteristics of Bitcoin
blockchain that make it an interesting database case, examines the relative merits of the three different
methods, and provides suggestions on how they may be used in IS courses. Overall, we find that using

SQL to query blockchains can be an effective educational technique for introducing it to IS curriculum.

Keywords: Blockchain, SQL, Bitcoin, database, query, data analytics.

1. INTRODUCTION

Bitcoin (Nakamoto, 2008) is the first major
decentralized cryptocurrency with wide
acceptance. It solves the double spending
problem, in which a digital currency may be spent
two or more times, by storing a publicly
accessible general ledger of all Bitcoin
transactions in a blockchain (Nakamoto, 2008).

Unlike bank transactions, Bitcoin transactions are
digitally signed and irreversible, and are stored in
a peer-to-peer network of nodes (running Bitcoin

Core) using the Bitcoin protocol (Antonopoulos,
2017). Bitcoin Core (Bitcoin.org, 2018) is open

sourced and contains code storing and
maintaining a copy of the Bitcoin blockchain in a
node, together with a reference Bitcoin’s client to
interact with the blockchain.

Although considered as behaving more like a
speculative investment than a currency by many

(Yermack, 2015; Detrixhe, 2018), Bitcoin has
stormed into public awareness, reaching a
historical peak price of $17,900 on December 15,

mailto:yue@uhcl.edu
mailto:Chandrasekark@uhcl.edu
mailto:GullapalliH2010@uhcl.edu

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 2

http://iscap.info

2017 (Wikipedia, 2018). Table 1 contains a

collection of some vital Bitcoin parameters on
5/4/2018 3:00pm central time to provide an
illustrative snapshot. The data is collected from

various public websites, including blockchain.info,
bitnodes.earn.com, and bitcoinblockhalf.com.
Some parameters will be explained later in
Section 2. The current size of the Bitcoin
blockchain is more than 166GB and it stores all of
the more than 314 million of Bitcoin transactions.
With a market capitalization of $165 billion

seemingly pulling out of thin air, no wonder
Bitcoin has caught the imagination of the public.

Number of Bitcoin nodes 10,521

Number of Bitcoins mined 17,015,275

(81.03% of total)

Bitcoin’s price $9,670

Bitcoin’s market

capitalization

$164,546,216,88

7

Bitcoin blockchain’s size 166.4GB

Latest block 521,222

Number of transactions in

the latest block

2,107

Estimated transaction
volume in the latest block

1,120.01945528
Bitcoin (BTC)

Total transaction fees in

the latest block

0.40182639 BTC

Total number of all
Bitcoin transactions

314.1 millions

Difficulty level 4,022,059,196,1

65

Number of transactions in
the last 24 hours

225,966

Number of unspent
transaction outputs

55,972,237

Table 1. A snapshot of Bitcoin’s Parameters
on 5/4/2018 3:00pm central time

Bitcoin’s success triggered many other
cryptocurrencies, called altcoins, which numbered
in 1,565 as of April 20, 2018 (Wikipedia 2018b).

Even so, many consider that the blockchain
technology developed and validated by Bitcoin
may be much more important than Bitcoin itself
(Tucker, 2018). Bitcoin blockchain can be

considered as the first generation of blockchain
that stores a specific cryptocurrency. Current and

future generations of blockchains advance in
many directions (Zheng, et al., 2017).

With the general ledgers of transactions nearly
impossible to tamper with, blockchains can be
extended to store any valuable property or asset
beyond cryptocurrency. Another advancement is

the introduction of rich programming languages
and stateful blockchains to allow the
constructions of smart software contracts to

govern transaction completion, such as the

approach taken by Ethereum (2018), the second
most popular cryptocurrency.

Tapscott, & Tapscott (2017a) indicate that

blockchain technology enables businesses with
the Internet of Value (IoV): “a secure platform,
ledger, or database where buyers and sellers
could store and exchange value without the need
for traditional intermediaries.” The results can be
drastically reduced transaction cost and friction
that disrupts the usual ways of conducting

businesses in a wide spectrum of areas. Using
higher education as an example, blockchain
allows a Web of decentralized transactions,
possibly enabling huge changes in keeping

student records, optimizing student loan
management, improving pedagogy, incubating

meta-universities, and ultimately creating a
global network of learning institutes (Tapscott &
Tapscott, 2017b). However, it is worthy to note
that like many other leading edge technology,
blockchains come with risks and costs (for

example, see Walch, 2015).

Despite its importance, information systems (IS)
research in blockchain is just beginning to emerge

(Beck, Avital, Rossi & Thatcher, 2017). In IS
education, blockchain can be relevant to many
courses, including technical topics such as
computer security, data analytics, databases,

cryptocurrency, smart contracts, etc. There are
very few papers on incorporating blockchain
technology in information systems and computing

courses, especially in the lower level. An
exception is (Delmolino, et al., 2016) that
describes the experience of safe smart contract
development laboratories in a security class.
There is a gap between the importance of
blockchain, and its existing body of knowledge

and results in IS education. For example, the
2017 EDSIG conference provided a workshop on
“the Easy Way to Create a Blockchain using Fabric
Composer” (Foley & Decker, 2017) in an effort to
bridge the gap. This paper aims to contribute in
filling this gap by describing our experience with

querying Bitcoin blockchain using SQL. It is

possible that other popular blockchains, such as
Ethereum, can be used for the same purpose of
experimentation with blockchain. However, we
selected Bitocin since it is the most popular public
blockchain with tools widely available.

The rest of the paper is structured as follows.

Section 2 discusses the basics of Bitcoin and its
blockchain, and the goals of this work as the
background context. Section 3 examines three
methods of accessing Bitcoin data from SQL

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 3

http://iscap.info

databases. Section 4 describes a Bitcoin’s SQL

query assignment in an undergraduate database
course and the accompanying surveys. Section 5
discusses our experience using SQL to query the

Bitcoin blockchain. It describes the characteristics
that make it an interesting database case, and
provides suggestions on how these different
methods can be adopted in IS courses. Section 6
discusses future directions and draws our
conclusions.

2. BACKGROUND

2.1 Bitcoin Blockchain and Transactions
Bitcoin blockchain stores the entire history of
Bitcoin transactions. A transaction stores the

transfers of Bitcoins (in the unit of Satoshi, with

1 Bitcoin (BTC) = 100,000,000 Satoshi) from
input accounts to output accounts, plus
authorization and other information. Bitcoin
account addresses are public key hash values that
can be authenticated by the corresponding
private keys. Users can use a Bitcoin wallet to
manage their Bitcoin accounts (public key

hashes) and interact with the Bitcoin blockchain.

Unlike a bank transaction transferring money
from one account to another account, Bitcoin
transactions allow multiple inputs and multiple
outputs. Figure 1 shows four historically
interesting Bitcoin transactions. Figure 1a is the

very first Bitcoin transaction as 50 BTC went to
the Bitcoin address
‘1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa’, which
is assumed to be controlled by Satoshi Nakamoto,
the mysterious Bitcoin’s inventor(s). Bitcoin
blockchain is known to be pseudonymous as all

transactions are publicly accessible but the
ownerships of accounts are anonymous within the
blockchain. Many Websites provide Web pages
and APIs to access Bitcoin’s data in various
formats such as HTML, JSON or XML. For
example, one can copy and paste Bitcoin
addresses, transaction hash addresses, or block

addresses from this paper into the popular site,
Blockchain.info. Figure 2 shows a part of the
output page of Blockchain.info for the Bitcoin

transaction of Figure 1a.

Transactions are grouped in blocks. For example,
Table 1 indicates that the block #521,222 has

2,107 transactions. The first Bitcoin transaction,
called the genesis transaction here, is included in
the first block (known as the Genesis Block or
Block #0) as shown in Figure 1a. It is known as a
Coinbase transaction to reward 50 BTC to the
Bitcoin miner who had successfully created the

block. Since the reward is created out of nowhere
by Bitcoin, there is no input in a Coinbase

transaction. Bitcoin mining involves finding a

small enough block hash of the 80 Bytes header
of the new block. The required smallness, or
difficulty level, of the block hash is adjusted every

2,016 blocks to ensure that every block is mined
in about 10 minutes. The difficulty level of
4,022,059,196,165 in Table 1 indicates a
difficulty level of more than 4 trillion times as
difficult as that of the Genesis block. The 80 Byte
block header contains the hash of the Merkle tree
which is constructed from the hashes (addresses)

of all transactions, ensuring that transactions
cannot be changed. The block header also
contains the previous block hash and thus the
block is chained together. Changing a block will
change its block hash, and any subsequent block

hashes will needed to be recomputed. This

ensures that the blockchain is nearly impossible
to tamper with.

Unlike a bank that keeps the balance of every
account, Bitcoin blockchain keeps track of every
transaction, including those transaction outputs
(TXOut) that have not yet been spent, which are

known as ‘unspent transaction outputs’ (UTXO).
UTXO can be used for future transaction inputs
(TXIn). Note that in Figure 2, the transaction
output of the Genesis block is still an UTXO. Thus,
the very first Bitcoins generated has not yet been
spent, probably intentionally.

Figure 1b shows another famous transaction,
a1075db55d416d3ca199f55b6084e2115b9345e
16c5cf302fc80e9d5fbf5d48d, the first
documented purchase of a good with Bitcoin in
which 10,000 BTC was used to buy two Domino’s
pizzas on May 17, 2010. This pizza transaction

has one TXOut (presumably going to an account
owned by the pizza provider). Note that the buyer
gathered together 131 UTXO from previous
transactions as TXIn to pool together 10,000.99
BTC. This paid the 10,000 BTC to the TXOut, and
the transaction fee of 0.99BTC, which was
collected by the block miner together with the 50

BTC mining reward. After the transaction was
confirmed, these 131 UTXO were recorded as
spent and can no longer be used as inputs to

other transactions, thus solving the double
spending problem.

Figure 1c shows how the 10,000 BTC were used

by the ‘pizza person’ to provide for two TXOut in
a transaction called the pizza-provider
transaction here. Again, after this transaction, the
previously unspent TXO to the pizza person with
10,000 BTC was recorded as spent.

In general, transactions can have multiple inputs
and multiple outputs. Figure 1d shows the oldest

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 4

http://iscap.info

Bitcoin transaction with three TXIn and two TXOut

such that one TXOut address is also a TXIn
address in the transaction
(418b84d7649055411d8be4e241376a93825c1d

6248a304ae693060b3007a43f2). The sender
gathered three UTXO in his accounts, each with
50 BTC. One TXOut received 105 BTC, and the
change of 44.74 BTC, after 0.26 BTC transaction
fee, was sent back to the address
1NA7Mopi9b4YhuWSBrB7D4W5XsTY53N1zY,
which is one of the input addresses owned by the

sender. We refer to this transaction as the 3i2o-
change transaction.

2.2 Purpose of Investigation
The technical details of Bitcoins are quite

complicated. Much of the complexity of Bitcoins is

owed to the complex decentralized and secure
ledger structure, performance requirements, and
constant evolutions of the Bitcoin software and
protocol to solve emerging problems. In a sense,
Bitcoin is a giant software experiment. Only few
people, such as cryptocurrency developers and
blockchain engineers, need to know many of

these low-level and tedious complexity. For IS
education, most students only need to know the
basic blockchain structure, which can be modeled
in a high level as containing a sequence of blocks
of transactions, with each transaction having
possibly multiple TXIn and TXOut, in which an
UTXO from a previous transaction is used as the

source for a TXIn (see Figure 3). Many IS courses
may only need to use this model.

Blockchains make very good cases for data
science and analytics courses. For example, one
may search using the keywords ‘blockchain’ or

‘bitcoin’ in the leading data science and analytics
site Kaggle (2018), and find vibrant communities
with a large collection of datasets and kernels.
However, current blockchains are designed as
special kinds of Online Transaction Processing
(OLTP) systems, but not Online Analytical
Processing (OLAP) systems. Data analytics by

querying the blockchain directly, such as using
the reference Bitcoin’s client, can be ineffective
(Anh, et al., 2018). Although many Websites

provide services for querying Bitcoin blockchain,
they are mostly limited by their usage policies and
interfaces, and can be effective only for small
queries that do not process a large numbers of

transactions.

Therefore, there are much activity on extracting
data from Bitcoin for storage in databases that
can provide efficient accessing. For example,
McGinn, McIlwraith & Guo (2018) and Spagnuolo,

Maggi & Zanero (2014) both used Neo4j, an open
source graphical database. In this work, we select

to use SQL databases to construct examples and

assignments for accessing, querying, and
analyzing Bitcoin. SQL is a high level declarative
language that is relatively easy to learn. Students

with some database background should be
familiar with it. With highly available SQL
developers, it has become a de facto standard
even for many non-relational databases. For
example, in Big Data technologies, HiveQL is a
SQL-like declarative language of Hive for
MapReduce (Thusoo, et al., 2010), and Spark-

SQL is a SQL dialect on top of Spark (Armbrust,
et al., 2015). Similarly, cloud computing
platforms also embrace SQL, such as BigQuery by
Google (2018a), which supports an extension of
standard SQL. Thus, our purpose is to investigate

using SQL databases in IS courses for querying

blockchains.

3. ACCESSING BITCOIN DATA WITH SQL

This section describes three methods we have
investigated: Abe-Bitcoin, BigQuery’s Bitcoin, and
blockchainsql.io (bcsql). We identified a collection

of query problems for Bitcoin and developed
solutions on these methods as a practical way to
examine them for suitability of setting
assignments. The near term goal is to identify a
suitable platform for assignments in an
undergraduate database course.

3.1 A Local Bitcoin SQL Database
Storing the Bitcoin blockchain in a local SQL
database allows full control and customization to
satisfy diverse needs. Bitcoin blockchain is an
append-only database in which the only change
occurs about every ten minutes when a new block

is created. Blocks are stored by Bitcoin Core in
data files that do not change (except for the most
recent evolving one) and can be parsed to
populate a SQL database. There are available
open source Bitcoin SQL database options, such
as Abe (2018) and Bitcoin Database Generator
(2018). We selected Abe because it captures

more blockchain data, is more popular, and can
also be used to store a number of other
cryptocurrencies.

To install Abe, it is necessary to install Bitcoin
Core to obtain a local copy of the blockchain first.
Depending on the connection bandwidth and

computer configuration, it may take a few hours
to a few weeks to fully synchronize with the
Bitcoin network. We selected Postgres 9.6 to
install Abe because it has good performance
properties. Abe is still in an Alpha version and we
had to overcome a few technical issues.

Eventually, the installation was complete but it
took many days to do so in an old notebook.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 5

http://iscap.info

Partial ER diagrams of the three methods are

shown in Figure 4 in Appendix 1. Table 2 shows
some of their basic parameters. Abe has 17 tables
and 4 views. It is designed to be flexible enough

to handle multiple cryptocurrencies. Many tables
do not have derived columns that are computed
and stored for efficiency. For example, the table
txin(txin_id, tx_id, txin_pos, txout_id,
txin_scriptsig, txin_sequence) stores information
about transaction input. The field txin_id serves
as a surrogate primary key, and tx_id and

txout_id are foreign keys referencing the
transaction containing the txid, and the txout
used for the TXIn respectively. The other three
columns are basic raw data. Users accessing a
TXIn usually needs more than raw basic data and

Abe uses a view txin_detail, which has 21

columns to provide contextual and summary data
for the TXIn.

 Abe BigQuery bcsql

tables 17 2 13

views 4 0 0

stored derived
columns

5 0 15

Table 2 Some Parameters of the Three DB

To provide an idea of how queries can be
constructed, consider the following four
problems, each related to an example transaction
in Figure 1.

1. Genesis transaction: find the (Genesis)

block hash from the transaction hash.

2. Pizza transaction: find the addresses and

amounts of the TXIn from the pizza

transaction hash.

3. Pizza-provider transaction: find the pizza-

provider transaction hash, its output

addresses, and amounts that used the

UTXO of the pizza transaction.

4. 3i2o-change transaction: find the

transaction hash of the first transaction

with 3 TXIn and 2 TXOut, and also with a

change going back to one of the TXIn

addresses.

For reference, Appendix 2 lists the solutions to
these problems using Abe. During our

investigation, we found the relation schema of
Abe to be relatively easy to use and we were able
to construct solutions for a good collection of
interesting query problems, some significantly
more complicated than the four examples here.
However, there was a performance issue in Abe
that can be crucial especially when used

concurrently by many students, some of them
novices. For example, the Abe’s solution for the
pizza provider transaction in Appendix 2 selects

from six table instances, two of which being of the

table txout. It once took 143 ms to execute in an
old notebook. If we replace one table instance of
txout by the view txout_detail, which provides

additional contextual and summary columns, the
query only needs to select from three more table
instances, making the query simpler. However,
the execution time became 13 minutes. This is
more serious in the 3i2o-change problem. The
solution in Appendix 2 limits the solution space to
the first 500 transactions with three TXIn and the

first 500 transactions with two TXOut and hopes
that the intersection of these two pools of
transactions includes the result, which it does.
Removing these limits make the query not able to
complete in hours. Thus, students submitting

non-optimized SQL queries can clog up the

database. We are currently working on improving
the performance of Abe. Before its performance
becomes more acceptable, it is desirable to use
other methods for setting the assignments.

3.2 Through Cloud Computing
Google’s BigQuery is a cloud based enterprise

data warehouse platform for real time data
analysis using SQL that is compliant to the SQL
2011 standard and it has extensions for querying
nested data (Google, 2018a). Customers are
charged by the number of bytes of data processed
(scan cost) and the first 1TB per month is free.
Controlling costs by minimizing the volume of

data processed of the query is a key concern in
cloud computing (Google, 2018b).

BigQuery’s extensions to SQL allow columns to
store records and structures. Structures can be
expanded to tables by using the UNNEST

function, which can then be used like tables by
JOIN and SELECT. Thus, its public Bitcoin’s
dataset has only two tables: blocks and
transactions, with internal structures stored in
columns. For examples, the many TXIn and
TXOut of a transaction are stored in the columns
‘inputs’ and ‘outputs’ of the transaction

respectively.

BigQuery’s Bitcoin is designed mainly for fast data

analytics using a columnar storage and tree
architecture (Sato, 2012). Bitcoin data is filtered
and selectively stored in ways to facilitate
analysis for various kinds of analytic problems. It

is however not designed for exploring individual
transaction. The complexity for the solutions of
the four problems is also higher since it does not
generate a surrogate key for TXOut to easily link
TXIn to TXOut. Thus, we decided not to use
BigQuery as the platform for our database

assignment.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 6

http://iscap.info

3.3 Through a Third Party Web Interface

We next investigated blockchainsql.io (2018),
which contains a Web interface to submit SQL
statements to query its proprietary SQL Bitcoin

database. Figure 5 shows a screenshot where
users can submit queries or inspect the relation
schema. It uses Microsoft SQL Server and has 13
tables, with many stored derived columns to
improve performance. It is sufficiently fast for the
large majority of the problems we prepared for
the problems, and students reported no

performance issues.

Thus, with no setup and maintenance cost,
reasonable performance, and ease of use, our
first pilot assignment used blockchainsql.io.

However, it is worthy to point out its limitations.

The instructor has no control of its availability,
reliability, or interface, and can only use whatever
data the provider selects to provide. For example,
the latest available block it provided on May 7,
2018 was #487,853 with a timestamp of “2017-
09-06 16:23:23.” Thus, about 8 months of the
most recent blocks were not available. Moreover,

the output is in HTML and limited by the provider
to 10 rows per page. It cannot be used easily for
data analytics. Despite these limitations, we
found that blockchainsql.io is ideal for lightweight
small database assignments.

4. A BITCOIN’S SQL ASSIGNMENT

We experimented with an assignment on using
SQL to query Bitcoin blockchain with
blockchainsql.io in an undergraduate Introduction
to Database course in Spring 2018. It is
homework #8 of a total of 10 assignments in the

course. There was an earlier traditional SQL
assignment. We gave a one hour lecture to
introduce cryptocurrency, Bitcoin, and
blockchain, but did not discuss blockchainsql.io as
students were expected to explore it themselves.
Because of space, Appendix 3 shows only the core
part of the assignment without the introductory

parts on Bitcoin, blockchain, and submission
requirements.

The objectives of the assignments are:
1. Execute SQL statements via a third party

Web interface.

2. Study the relation schema of a new

application: a Bitcoin SQL database.

3. Gain insight on blockchain and Bitcoin.

4. Gain some exposure on Microsoft SQL

Server. (The course mainly used MySQL.)

The assignment contains six query questions

ranging from easy to beginning intermediate.

Screenshots of expected output are provided with

explanations. Tips are included for the more
difficult questions mainly on the difference
between MySQL and MS SQL. Students need to

have a good understanding of the relational
schema to answer the questions, especially the
more difficult ones. As a reference, the suggested
solutions are shown in Appendix 4.

Before the lecture, a pre-assignment survey was
conducted with 25 respondents. It shows that two

students have personally invested in Bitcoin and
9 students have friends or family members
invested in Bitcoin. This is a relatively high
participation comparing to the general public.

In a post-assignment survey, students were

asked about their perception on various aspects
of the assignments in a scale of 7 (1 signifying
strong disagreement, 7 strong agreement, and 4
neutral). The result is summarized in Table 3.
Because of the small size of the sample, these
results should only be considered to be
preliminary. No quantitative analysis has been

conducted.

Statements Average

1. The assignment is useful. 5.58

2. The assignment is interesting. 6.00

3. The assignment is practical. 5.52

4. The assignment helps me gain

experience on SQL execution
through a Web interface.

5.65

5. The assignment exposes me to
study the relational schema of a
new application.

5.81

6. The assignment helps me gain

insight on Bitcoin and blockchain.

5.94

7. The assignment helps me to
gain experience on MS SQL
Server.

5.74

8. Overall, the assignment is

effective.

5.55

Table 3. Post-Assignment Survey Results

The average responses range from 5.52 to 6.00,

suggesting that the assignment is relatively
effective in achieving its learning objectives. The

best response is on Q2 Interestingness (6.00).
This suggests that a timely assignment on a
confusing yet trending technology may be
appealing. The response on Q3, help gaining
insight in Bitcoin and blockchain, is also high at
5.94. This suggests this kind of assignments may
be useful not only in a database course, but also

in courses directly targeting cryptocurrency and
blockchain.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 7

http://iscap.info

We asked two identical questions in both the pre-

assignment and post-assignment surveys on the
student’s interest in Bitcoin and their familiarity
on its technical aspects. The average responses

in a scale of 5 are shown in Table 4.

 Pre Post

Do you find Bitcoin
interesting?

3.36 3.94

Are you familiar with the
technical aspects of Bitcoin?

2.24 3.1

Table 4. Pre and post assignment surveys

There are marked improvements on both
indicators after the assignment. However, since

there were two events, the one hour lecture and
the assignment, we do not know the portion of
contribution from the assignment. Even with
nearly no prior technical knowledge on Bitcoin,
students seem to be doing fine in the
assignments. The average grade for the
assignment is 91.2, within the range of the

average grades of 87.6 to 96.0 among the ten
homework assignments. Overall, the surveys can
only be considered as a pilot study but it points
to the potential of using SQL to query Bitcoin
blockchain as an effective learning tool.

5. DISCUSSION

As the perceived enabling technology of IoV, the

next frontier in the advance of the Internet,
blockchain is important in any forward looking IS
curriculum. We discuss how blockchains can be
incorporated into database courses as well as

other IS courses in this section.

5.1 Blockchain as Database Cases
Bitcoin is not only technologically interesting, but
is also a very good general case study. It is hard
to find another application with more than a $100
billion value and all transactions publicly

accessible. Blockchains also make very good case
studies for databases. Traditional database
applications provide four basic functions of
persistent data: create, read, update, and delete

(CRUD). Normalization theory in relational
databases aims at minimizing unnecessary data

redundancy to better maintain data consistency
while writing to the database (Elmasri, &
Navathe, 2010; Ricardo, 2015). However,
normalization may create more relations,
resulting in degraded performance. Thus, when
appropriate, there may be a reverse,
denormalization process to improve performance.

As data consistency is crucial for traditional
database applications, most database courses
and textbooks pay much more attention to

normalization than denormalization. On the other

hand, in the era of Big Data, data in many newer
applications is never updated or even deleted.
These kinds of increasingly popular append-only

databases have a strong effect of how databases
should be designed and optimized but are not well
treated in database courses. The Bitcoin
blockchain is an excellent illustrative case study
for append-only databases.

Because of space, we only discuss one other

example here. Derived columns are an
inadequately discussed topic in database
education. As popular database textbooks,
Ricardo and Urban (2015), and Elmasri and
Navathe (2010) both discuss derived columns

under ER-modeling in a single paragraph and

both provide the classical example that ‘age’ is a
derived column computed from the date of birth
(dob). They emphasize that derived columns
should not actually be stored, but computed
every time when the values are needed. If, for
example, age is actually stored, the functional
dependency dob -> age will make the relation not

in the third normal form, an indication of poor
table design. This is the approach taken by Abe in
which there are only five stored derived columns,
all in the table block. Instead, Abe uses views to
provide derived columns (such as total inputs and
total outputs in a transaction), which are
computed every time. The alternate option is to

actually physically store the derived columns to
avoid repeated computations. The stored derived
columns will need to be recomputed whenever
there are changes. For write-intensive databases,
that can degrade the performance significantly.
Thus, most DBMS called derived columns as

computed columns and they are not physically
stored by default. However, an append-only
databases such as Bitcoin blockchain do not have
this problem as stored derived columns will never
be recomputed. Blockchainsql.io have many
stored derived columns and its performance is
generally superior. In contrast, the views in Abe

are practically too slow for many queries.

Overall, we find that Bitcoin blockchain is a very

unique and good case for database education.

5.2 Uses of SQL Databases in IS Courses
The three methods have their own relative merits.

Having a local database storing the blockchain is
the most versatile but also requires the most
work. It is also desirable to install Bitcoin Core to
include the actual Bitcoin blockchain for advanced
experimentations. This is especially suitable for
courses on computer security, cryptocurrency, or

blockchain as low level assignments can better be
designed using the additional query capability

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 8

http://iscap.info

beyond the blockchain. For example, we have

constructed queries to identify blocks with
potential security events in the blockchain (such
as attempted denial of service attacks) or altcoin

transactions that piggyback on the Bitcoin
blockchain.

Cloud computing solutions such as BigQuery are
especially suitable for courses focusing on data
analytics, data science, Big Data, and cloud
computing. Students will have the additional

stress on constructing code that optimizes cloud
computing cost, but they are standard
considerations for those topics. The Kaggle
(2018) website on BigQuery’s Bitcoin is especially
good for data analytics and data science courses

as it contains an active community of rich

resources and kernels.

Finally, a website such as blockchainsql.io is
especially suitable as a lightweight platform for
database and other introductory courses. It is just
necessary for the instructor to allow plenty of
time for the assignment as the site is provided by

a third party in which availability is not
guaranteed.

6. CONCLUSIONS

This work can be considered as a pilot study on
incorporating blockchain into IS curriculum.

Though limited, the initial result is encouraging.
We are working on many directions to extend the
project and will report the results in the future.

1. Incorporate blockchain materials and

assignments into other courses,

especially related to data analytics, data

science, and computer security.

2. Develop assignments on using the three

methods discussed.

3. Develop a more versatile and effective

local platform to support blockchain and

Bitcoin experiments and assignments.

This includes performance refinement of

Abe, extension to include other relevant

datasets (such as Bitcoin’s price history)

and cryptocurrencies, and the uses of

other database systems, especially Neo4j

and MongoDB.

4. Develop tools to support our local

platform.

5. Create our own blockchain applications

for experimentation.

6. Conduct a quantitative study on the

effectiveness of the local platform and

assignments.

In summary, incorporating an important enabling

technology such as blockchain into the curriculum
will increase the relevance of forward looking IS
programs and this paper is a contribution on this

direction.

7. REFERENCES

Abe, block browser for Bitcoin and similar
currencies, Retrived May 8, 2018 from
https://github.com/bitcoin-abe/bitcoin-abe.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu,

D., Bradley, J. K., ... & Zaharia, M. (2015,
May). Spark sql: Relational data processing in
spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on

Management of Data (pp. 1383-1394).

Anh, D. T. T., Zhang, M., Ooi, B. C., & Chen, G.

(2018). Untangling Blockchain: A Data
Processing View of Blockchain Systems. IEEE
Transactions on Knowledge and Data
Engineering.

Antonopoulos, A. M. (2017). Mastering Bitcoin:
Programming the Open Blockchain. O'Reilly
Media, Sebastopol, CA.

Beck, R., Avital, M., Rossi, M., & Thatcher, J. B.
(2017). Blockchain Technology in Business
and Information Systems Research. Business
& Information Systems Engineering.

Bitcoin Database Generator (2018). Retrieved
May 8th, 2018 from
https://github.com/ladimolnar/BitcoinDataba

seGenerator.

Bitcoin.org (2018). Bitcoin Core. Retrieved May 5,
2018 from https://bitcoin.org/en/.

Blockchainsql.io (2018). Front Page,
http://blockchainsql.io/. Retrieved May 3,
2018.

Delmolino, K., Arnett, M., Kosba, A., Miller, A., &
Shi, E. (2016). Step by step towards creating
a safe smart contract: Lessons and insights
from a cryptocurrency lab. In International
Conference on Financial Cryptography and

Data Security (pp. 79-94). Springer, Berlin,
Heidelberg.

Detrixhe, J. (2018). Robert Shiller wrote the book
on bubbles. He says “the best example right
now is bitcoin.” Retrieved May 5, 2018 from
https://qz.com/1067557/robert-shiller-
wrote-the-book-on-bubbles-he-says-the-
best-example-right-now-is-bitcoin/.

Elmasri, R., & Navathe. S. (2010). Fundamentals

of database systems. Addison-Wesley
Publishing Company.

https://github.com/bitcoin-abe/bitcoin-abe
https://github.com/ladimolnar/BitcoinDatabaseGenerator
https://github.com/ladimolnar/BitcoinDatabaseGenerator
https://bitcoin.org/en/
http://blockchainsql.io/
https://qz.com/1067557/robert-shiller-wrote-the-book-on-bubbles-he-says-the-best-example-right-now-is-bitcoin/
https://qz.com/1067557/robert-shiller-wrote-the-book-on-bubbles-he-says-the-best-example-right-now-is-bitcoin/
https://qz.com/1067557/robert-shiller-wrote-the-book-on-bubbles-he-says-the-best-example-right-now-is-bitcoin/

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 9

http://iscap.info

Ethereum (2018). Ethereum Homestead

Documentation, Retrieved May 6, 2018 from
http://www.ethdocs.org/en/latest/.

Foley, J., & Decker, M. (2017)The Easy Way to

Create a Blockchain using Fabric Composer,
Workshop Presentation, Proceedings of the
2017 EDSIG conference.

Google, BigQuery’s front page (2018a),
https://cloud.google.com/bigquery/,
Retrieved May 4, 2018.

Google, BigQuery Best Practices: Controlling

Costs (2018b),
https://cloud.google.com/bigquery/docs/bes
t-practices-costs

Kaggle, Bitcoin blockchain, Retrieved May 11,
2018 from
https://www.kaggle.com/bigquery/bitcoin-

blockchain.

McGinn, D., McIlwraith, D., & Guo, Y. (2018).
Toward Open Data Blockchain Analytics: A
Bitcoin Perspective. arXiv preprint
arXiv:1802.07523.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer
electronic cash system. Retrieved May 5,

2018 from https://bitcoin.org/bitcoin.pdf.

Ricardo, C. M. (2015). Databases illuminated.
Jones & Bartlett Publishers.

Sato, K. (2012). An inside look at google
bigquery. White paper, Retrieved May 19,
2018 from https://cloud. google.
com/files/BigQueryTechnicalWP.pdf.

Spagnuolo, M., Maggi, F., & Zanero, S. (2014).
Bitiodine: Extracting intelligence from the
bitcoin network. In International Conference
on Financial Cryptography and Data Security
(pp. 457-468). Springer, Berlin, Heidelberg.

Tapscott, D., & Tapscott, A. (2017a). How

blockchain will change organizations. MIT
Sloan Management Review, 58(2), 10.

Tapscott, D., & Tapscott, A. (2017b). The

BlockChain revolution and higher education.
Educause Review, 52(2), 11-24.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z.,

Chakka, P., Zhang, N., ... & Murthy, R.
(2010). Hive-a petabyte scale data
warehouse using hadoop. In IEEE 26th
International Conference on Data Engineering
(ICDE), 2010 (pp. 996-1005).

Tucker, I. (2018). Blockchain: so much bigger
than bitcoin… The Guardian. Retrieved May 5,

2018 from
https://www.theguardian.com/technology/2
018/jan/28/blockchain-so-much-bigger-
than-bitcoin.

Walch, A. (2015). The bitcoin blockchain as
financial market infrastructure: A consideration
of operational risk. NYUJ Legis. & Pub.
Pol'y, 18, 837.

Wikipedia (2018a). History of Bitcoin. Retrieved
May 5, 2018 from
https://en.wikipedia.org/wiki/History_of_bitc
oin.

Wikipedia (2018b). List of cryptocurrencies.
Retrieved May 6, 2018 from
https://en.wikipedia.org/wiki/List_of_cryptoc

urrencies.

Yermack, D. (2015). Is Bitcoin a real currency?

An economic appraisal. In Handbook of digital
currency (pp. 31-43).

Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H.
(2017). An overview of blockchain
technology: Architecture, consensus, and

future trends. In Big Data (BigData
Congress), 2017 IEEE International Congress
on (pp. 557-564).

http://www.ethdocs.org/en/latest/
https://cloud.google.com/bigquery/
https://www.kaggle.com/bigquery/bitcoin-blockchain
https://www.kaggle.com/bigquery/bitcoin-blockchain
https://bitcoin.org/bitcoin.pdf
https://www.theguardian.com/technology/2018/jan/28/blockchain-so-much-bigger-than-bitcoin
https://www.theguardian.com/technology/2018/jan/28/blockchain-so-much-bigger-than-bitcoin
https://www.theguardian.com/technology/2018/jan/28/blockchain-so-much-bigger-than-bitcoin
https://en.wikipedia.org/wiki/History_of_bitcoin
https://en.wikipedia.org/wiki/History_of_bitcoin
https://en.wikipedia.org/wiki/List_of_cryptocurrencies
https://en.wikipedia.org/wiki/List_of_cryptocurrencies

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 10

http://iscap.info

Appendices

Appendix 1. Figures

Figure 1. Four Interesting Bitcoin Transactions

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 11

http://iscap.info

Figure 2. Information about the First Bitcoin Transaction Shown in blockchain.info

Figure 3. A High Level Model for Bitcoin Blockchain

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 12

http://iscap.info

(a) Abe-Bitcoin

(b) BigQuery’s Bitcoin

(c) blockchainsql.io

Figure 4. Partial ER Diagrams of Abe, BigQuery-Bitcoin and Blockchainsql.io

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 13

http://iscap.info

Figure 5. A Screenshot of the Front Page of Blockchainsql.io

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 14

http://iscap.info

Appendix 2 Abe’s Solutions to the Four Query Problems.

1. Genesis transaction: find the (Genesis) block hash from the transaction hash.

select b.block_hash
from block b join block_tx bt on (b.block_id = bt.block_id)
 join tx t on (bt.tx_id = t.tx_id)
where t.tx_hash = '4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b';

2. Pizza transaction: find the addresses and amounts of the TXIn from the pizza transaction hash.

select i.txin_pos, o.pubkey_hash, o.txout_value
from tx t join txin i on (t.tx_id = i.tx_id)
 join txout_detail o on (o.txout_id = i.txout_id)
where t.tx_hash = 'a1075db55d416d3ca199f55b6084e2115b9345e16c5cf302fc80e9d5fbf5d48d'
order by 1 asc;

3. Pizza-provider transaction: find the pizza-provider transaction hash, its output addresses, and
amounts that used the UTXO of the pizza transaction.

select t2.tx_hash as tx_hash,

p.pubkey_hash as address,
o2.txout_pos as position,
o2.txout_value as amount

from tx t1, txout o1, txin i, tx t2, txout o2, pubkey p
where t1.tx_id = o1.tx_id
and i.txout_id = o1.txout_id
and o2.tx_id = i.tx_id
and i.tx_id = t2.tx_id
and o2.pubkey_id = p.pubkey_id
and t1.tx_hash = 'a1075db55d416d3ca199f55b6084e2115b9345e16c5cf302fc80e9d5fbf5d48d'

4. 3i2o-change transaction: find the transaction hash of the first transaction with 3 TXIn and 2 TXOut,
and also with a change going back to one of the TXIn addresses.

select distinct t.tx_id, t.tx_hash -- depend on the fact that earlier transactions have smaller tx_id
from
 ((select tx_id from txin -- first 500 tx with 3 inputs
 group by tx_id
 having count(txin_id) = 3
 order by tx_id
 limit 500)
 intersect
 (select tx_id from txout -- first 500 tx with 2 outputs
 group by tx_id
 having count(txout_id) = 2
 order by tx_id
 limit 500))
 as temp -- tx with 3 inputs and 2 outputs
join tx t on (temp.tx_id = t.tx_id)
join txin i on (temp.tx_id = i.tx_id)
join txout o1 on (i.txout_id = o1.txout_id)
join txout o2 on (temp.tx_id = o2.tx_id)
where o1.pubkey_id = o2.pubkey_id -- output address is the change going back to an input address
order by t.tx_id
limit 1;

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 15

http://iscap.info

Appendix 3 A SQL Assignment on Querying the Bitcoin Blockchain

[1] Show the block information of the block with the hash address of
0x0000000000000000009769B8206EB613FBC90C607544636886E11CEB9161E33F.

Note that the hash address is the identifier of a block. Mining a Bitcoin block is more or less finding an
acceptable block hash address with enough number of 0’s at the beginning.

[2] Show the height of the most recent block stored in http://blockchainsql.io/.

[3] Show the most recent block stored in http://blockchainsql.io/.

[4] Average number of transactions per block in the entire Bitcoin blockchain.

[5] Average number of transactions per block for every year since the blockchain was created.

http://blockchainsql.io/
http://blockchainsql.io/

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 16

http://iscap.info

Tips: you may find the data type of the relevant column in the relation Block by following using the

‘Schema’ tab in the website.

[6] Show a summary report of the transactions in the block with height 400000 with three columns:

1. “# inputs in the group”: number of inputs in each group of the result. A group result is shown
in one row.

2. “Number of transactions”: numbers of transactions with this number of inputs.
3. “Total input Bitcoins”: total inputs’ BTC of transactions with this number of inputs.

Tips:

1. In SQL Server, transaction is a keyword and cannot be used directly as a table name. You will
need to refer to the transaction table as [transaction].

2. MS SQL Server is stricter than MySQL in many areas. For example,

select s.city, s.sname, count(s.snum)
from supplier s
group by s.city

order by count(s.snum);

is acceptable by MySQL without any syntax error. In MS SQL Server, there are a few syntax errors:

1. s.sname is not acceptable as a select column since it is not a group by column. MySQL may
just output the first s.sname in the group (which is not semantically correct as there may be

many supplier names for the same supplier city). MS SQL Server produces an error.
2. In MS SQL, a column needs to have a name, and therefore you will need to use

“count(s.snum) as count”.
3. As a group function, count(s.snum) cannot be used in the order by clause in MS SQL.

You will need to have your SQL statement in MS SQL as:

select s.city, count(s.snum) as count
from supplier s
group by s.city
order by count;

Note that count now refers to count(s.snum) and s.sname must be removed.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4607

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 17

http://iscap.info

Appendix 4 Suggested Solutions for the Assignment (in MS SQL of blockchainsql.io)

[1]

select *
from Block
where hash = 0x0000000000000000009769B8206EB613FBC90C607544636886E11CEB9161E33F

[2]

select max(height) as max_height
from Block

[3]

select *

from Block
where Height =
 (select max(height) as max_height
 from Block)

[4]

select avg(TransactionCount) as avg_transaction_count
from Block

[5]

select year(b.TimeStampUtc) as year,
 avg(b.TransactionCount) as avg_transaction_count
from Block b

group by year(b.TimeStampUtc)

[6]

select t.InputCount as "# inputs in the group",
 count(t.InputsBTC) as "Number of transactions",
 sum(t.InputsBTC) as "Total input Bitcoins"
from block b, [Transaction] t
where b.Id = t.blockId

and b.height = 400000
group by t.InputCount
order by "Number of transactions" desc

