
2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://iscap.info

Reflections on Applying the Growth Mindset

Approach to Computer Programming Courses

Katherine Carl Payne

kpayne@wtamu.edu

Jeffry Babb

jbabb@wtamu.edu

Amjad Abdullat
aabdullat@wtamu.edu

Department of Computer Information and Decision Management

West Texas A&M University
Canyon, Texas 79016, USA

Abstract

This paper provides motivation for the exploration of the adoption of Growth Mindset techniques in
computer programming courses. This motivation is provided via an ethnographic account of the
implementation of Growth Mindset concepts in the design and delivery of two consecutive computer

programming courses. We present components of a Growth Mindset approach to STEM education and
illustrate how they can be implemented in computing courses. Experiences of an instructor in two
consecutive computer programming courses at a private regional undergraduate university in the
southwestern United States are described and analyzed. Six students enrolled in the required Java
course in the fall semester opted to take the elective Python course in the spring semester.

Keywords: Growth mindset, reflective teaching practice, computer programming, STEM education,

pedagogy

1. INTRODUCTION

As educators in STEM courses, we frequently hear
students utter the phrase “I’m not a technical

person” or “I’m not good with computers.” I
receive messages from concerned students

expressing this sentiment every semester. With
each iteration of this disclaimer, I have thought
more about the following questions: 1) How do
students reach the conclusion that they do not
innately possess technical skills? 2) What are the

implications of students informing their teachers
that they are “not technical people”? and 3) What
can I do as an instructor to promote students’
success in technical courses when they have
these self-perceptions?

The work of Carol Dweck on what is termed the
“Growth Mindset” has received significant
attention in primary and secondary math

education and has recently experienced a
renaissance through application to math higher
education (Silva & White, 2013). Her work and

the work of Jo Boaler have informed my
understanding of student self-perception and
motivation and have provided the impetus for
designing a Growth Mindset approach to

computing courses (Boaler, 2016).

The goal of this paper is to provide motivation for
the continued exploration of adopting Growth
Mindset concepts in programming courses. By
relating experiences with students in two

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://iscap.info

consecutive programming courses—Java and

Python—we provide motivation for and describe
the implementation of Growth Mindset concepts
in a technical setting. To provide a theoretical

framework for the course experiences, the
Growth Mindset approach is first defined and
characterized and a summary of its use and
effectiveness in higher education is provided. The
course experiences are related in the
“confessional style” from the perspective of one
of the authors, in which some observations of the

everyday experiences of the students are
recounted (Schultze, 2000).

After a review of the Growth Mindset approach,
the course experiences are described in three
sections. The first two sections relate the

experience of the Java course, including my initial
approach to its design and delivery, the
challenges faced by the students and myself
during the first part of course, and how the course
was redesigned after the midterm to address
these challenges by applying Growth Mindset
concepts. The third section describes how the

experience of the Java course influenced the
students to take another programming course
with me and how Growth Mindset concepts
informed the design and implementation of the
Python course. A reflective discussion of both
courses and conclusions follow.

2. THE GROWTH MINDSET

The Growth Mindset approach is characterized by
a combination of attitudes towards students in
the classroom and actions taken to promote such
attitudes in course design and delivery. Jo Boaler
indicates that people with a Growth Mindset
believe that students’ intelligence increases with

hard work, whereas those with a “fixed mindset”
believe that while students can learn, they cannot
change their basic level of intelligence (Boaler,
2016). In practice, a Growth Mindset is
characterized by the following:

1. Problem-driven learning

2. Emphasis on learning concepts over
memorization of facts

3. Emphasis on the value of the learning
process

4. Framing mistakes as a positive and
integral part of the learning process

5. Collaborative problem-solving

Application in Higher Education
There has been a call for an increase in both the
provident of STEM subjects in both the K-12 and
post-secondary arenas of education (Breiner et
al., 2012; Brown et al., 2011; Charette, 2013). In

these cases, this call focuses on subjects which

generally contain a bit more
analytical/mathematical content than would be
the case for other subjects. There is also evidence

that simply guiding students to STEM, and
emphasizing its importance, is not a guarantee
for student engagement and flourish in the
subjects (Bell, 2016).

Among the reasonable questions to ask is what
pedagogies may be necessary to accommodate

an influx into STEM such that students not
previously oriented to the subjects will succeed?
The Growth Mindset, established particularly in
mathematics, holds the potential to widen the net
of those who are both engaged in and find self-
discovery and growth in learning STEM material.

To wit, we explore where Growth Mindset
techniques have been applied in higher education
and with what success. We focus specifically on
motivation as, given recent shifts to viewing the
benefits of education as being rooted in
competency (Trotter and Ellison, 1997),

motivation remains a primary component of
successful outcomes (Maurer et al., 2003).

Much of the work on Growth Mindset centers on a
proposition that the essential nature of a person
(self-image, social role, traits, and motives) is of
importance in a discussion of education, as it

leads to the development of the knowledge and
skills and to demonstrable competency (Spencer

and Spencer, 1993). Thus, both what students
encounter in technical challenges and the
performances we observe are at the “surface” of
observation. Whereas, components such as traits

and motivations, though not as readily
observable, constitute aspects of a “mindset” that
can at least be influenced.

The literature on Growth Mindset tends to paint a
dichotomy whereby mindsets, and thus
intelligence, is either fixed or growth. At a finer

point, growth modes fostered pedagogies of
discovery and habits rather than a simple
inventory of the challenges of the material and a
map of the territory to be conquered. The

difference can be subtle and, as much as when
one is asked whether they are a “good person,”
few will want to identify with or own any

behaviors ascribed to being within the “fixed”
mindset.

A mindset can be somewhat of a fleeting and
innocuous endeavor as much of progress and
definition happens outside of observability.

Improvisation (Weick, 1998), entrepreneurship
(McGrath et al., 2000), and global orientation

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://iscap.info

(Gupta and Govindarajan, 2002) have each been

outlined as requiring a concomitant “mindset” for
their most efficacious application.

It is difficult to pinpoint a single conclusive
definition for mindset; however, it seems to be
similar to worldview, Weltanschauung, or
outlook. As an internal yet influenceable
component of an individual, it is certainly
attached to sense making, motivation, and belief.

In its essence we see the distinction between
fixed and Growth Mindsets as follows:

 Fixed: Intelligence and capability are set
from an initial pool from which the
individual draws upon. The volume of this

“pool” is set and not anticipated to
expand.

 Growth: Intelligence and capability are
cultivated through habits that include
effort, persistence, and motivation

Among the aspects of the work of Dweck (2008)

and Boaler (2013) on mindset are those that
center on the student-teacher interactions during
the processes of learning and assimilating new
and difficult material. Their work centers on the
nature of feedback and what the object of that
feedback is. In cases where students faced
adversity, it was praise for their processes of

persistence, hard work, and focus that led to
more lasting and positive outcomes (Mueller and

Dweck, 1998). This is a principal characteristic of
a Growth Mindset. On the other hand, praise
ascribed to the individual—good job, you are very
smart—reinforced an emphasis on innate

qualities rather than earned qualities. Thus, much
as muscle is created through breaking and then
strengthening tissues via exercise, the new
neural pathways created via the adversity of
challenge mostly leads to an expansion of
capability and efficacy (Boaler, 2013).

These postulates lead to questions regarding the
design of learning experiences in the classroom
and the overall pedagogical strategies needed
particularly in STEM topics such as computer

programming. Notoriously difficult to learn
(Dalbey and Linn, 1985; Jenkins, 2003; Pea and
Kurland, 1984), programming seems to be a

promising candidate for the application of the
Growth Mindset.

Forays and successes in the use of the Growth
Mindset are discernable in the literature,
particularly so in STEM areas. O’Rourke et al.

(2014) discuss using Growth Mindset in a
gamified structure to develop incentives to persist

to good effect. To the degree that a Growth

Mindset elicits creativity, Karkowski (2014) has
explored the challenges of measuring this
mindset. Hernandez et al. (2013) conducted a

longitudinal study of the manner in which the
Growth Mindset encouraged participation in STEM
for underrepresented students and found some
success as well. Overall, there is growing
evidence that the Growth Mindset is effective in
the STEM context and worth consideration and
implementation (Murphy and Thomas, 2008).

An additional important contextual consideration
for Growth Mindset is not entirely rooted in its
inherent potential to help the learning process,
but it its foundational tenets—that attitudes about
learning matter. The basis for these attitudes has

some grounding in students’ formative processes.
Thus, many students have a context and
background that would suggest wide variance in
inputs to foundational attitudes towards learning.
For instance, many first-generation college
students may not have a framework in their
households that paints an experiential picture of

the habits and attitudes required for success
(Terenzini et al. 1996). This would also be the
case for the non-traditional student wherein the
expectations inherent in the work required to
excel in programming may not be innate and
readily identifiable (Collier and Morgan, 2008).
Thus, it is against this backdrop that we proceed

to describe the case for and the means by which
a focus on Growth Mindset provided a wider

pathway to success for more students in what is
always a fairly challenging endeavor: computer
programming. The experiences are presented
from the first-person perspective of one of the

authors.

3. JAVA PROGRAMMING: THE INITIAL
APPROACH

In the fall of 2017 I joined the management
information systems (MIS) faculty at a private

undergraduate school in the southwestern United
States with an enrollment of around 11000
students, 79% of whom demonstrate a need for
financial assistance, and many of whom are first-

generation college students. Other faculty had
expressed to me that, in addition to the
challenges commonly faced by undergraduates,

many of these students were under the
impression that they did not “belong” in college.
The self-held belief of first-generation college
students and students from underrepresented
groups in college that they “don’t belong” is a
common phenomenon in higher education (Foltz,

Gannon, & Kirschmann, 2014).

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://iscap.info

Determined to serve the students at the

university to the best of my ability, I took
inventory of my teaching philosophy. It was my
hope that with the right philosophy I could help

students change negative self-perceptions into
self-confidence and willingness to tackle
challenging technical material.

The basic tenet of the teaching philosophy I had
cultivated stated that given enough time,
opportunity, and motivation, any student could

learn anything. This optimistic philosophy was
developed through my own experiences as a
student, teaching assistant, and instructor. It was
with this philosophy and familiarity with
traditional approaches to teaching computer
programming that I designed a Java course for

MIS students.

Course Design
The Java programming course was initially
designed in the style of an undergraduate object-
oriented computer science course.

Figure 1: Pre-Midterm Java Course Syllabus

Java Software Solutions 9th edition by Lewis and

Loftus was used as the course textbook.
The course syllabus provided at the beginning of

the fall semester is shown in Figure 1. As shown,

the first two classes described course
expectations and provided a review of computer
basics. By the end of the first two weeks, the
students were required to install Eclipse or a

similar editor and the latest version of the Java
Development Kit (JDK) on their personal laptops
for use in the third week of classes.

In the classes that followed up to the midterm
exam, the students were introduced to the basics
of Java programming, from writing print

statements to using built-in packages. After the

midterm exam, the students were to learn how to
write their own classes, objects, and methods so
that they could be used when discussing the basic
control and data structures.

The course assessments, shown in Table 1,
included two exams each worth 30%,
programming assignments worth 29%, and
participation and attendance worth 11% of the
students’ grades.

Assessment Percentage

Attendance & Participation 11%

Programming Assignments 29%

Midterm Exam 30%

Final Exam 30%

Total 100%

Table 1: Java Course Assessments

Students were given the opportunity to earn
attendance and participation credit by responding
to three to five reflection and short answer
prompts delivered via an online form. Every class

except the day reserved for the midterm exam
was accompanied by post-class questions that
were graded on effort and completion rather than
correctness. An example of post-class questions
is shown in Figure 2.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://iscap.info

Figure 2: Post-Class Questions

Course Delivery
The few classes that did not include programming

were delivered primarily in a lecture format.
Lesson plans for subsequent classes followed the

format shown in Table 2.

Item Minutes

Administration 5

Solutions to post-class questions 5

Previous topic(s) review 10

2-3 new topic demonstrations 30

Student practice 10

Solution to student practice 10

Post-class questions 5

Table 2: Java Pre-Midterm Lesson Plan

The first part of each class was spent discussing
course administration and reviewing the topics

from the previous class. After the review, I

introduced two to three new programming
concepts—first through lecture and then through
demonstrations in Eclipse. The students then had
time to practice a programming problem on their
own before being presented with a solution. At
the end of class, students had the opportunity to
complete the day’s post-class questions related to

the new topics.

Discussion
There were aspects of the course design and
delivery that were both effective and ineffective
at promoting student learning. Post-class
reflections are a tool I have used in many courses

with positive feedback from students. An updated
version of the “index card method,” they are a
quick way to measure students’ understanding of
the topics presented in class. Students appreciate
the time at the end of class provided to complete
the questions, that they count towards their

overall grade, and are graded based on
completeness rather than correctness. When
gathered together, they are also a useful study
guide for exams.

The main weakness of the course delivery at this

point in the semester was the pattern by which
new topics were introduced and practiced. New
topics were shown on presentation slides and

then demonstrated in Eclipse, where students
were encouraged to follow along. I then
presented a similar programming problem for
students to work out on their own. What followed
was a ten-minute period in which most students
stared at blank editors on their laptops while I
walked around the classroom to observe their

progress (or lack thereof).

Formative feedback is one of the most powerful
tools we have as instructors to facilitate student
learning (Shute, 2008). Where the post-class
reflections were effective at providing feedback,

the time allowed for students to solve a problem
on their own was not—or at least did not seem to
be. The blank laptop screens (one or two with
open social media instead of a programming
editor) left me with the same uneasy feeling and
questions after every class: 1) Why don’t
students seem to understand the new material

after it is presented? 2) Are they afraid to make
mistakes when solving the problem on their own?
3) Are they simply waiting for me to return to the
front of the classroom to provide the solution?

Even when fewer new topics were presented as
we approached the midterm exam, what I had

hoped would be a daily opportunity for me to
observe student programming techniques and

provide feedback remained what seemed to be a
pause in instructor activity before students were
given a solution.

Towards a Growth Mindset
Discussions with students outside of class
indicated that the limited amount of practice time
they had, as well as the method by which new
topics were introduced made them afraid to solve
problems on their own and less motivated to learn
how to program. What was needed was a change

in class delivery that would improve students’
attitudes towards their ability to solve
programming problems. A Growth Mindset
approach to course redesign would provide a

problem-driven environment in which students
would build confidence as they wrote their own
solutions collaboratively and received feedback.

4. JAVA PROGRAMMING: MIDTERM EXAM

AND COURSE REDESIGN

A former high school teacher of mine once
snarkily remarked that he hoped that most of the

learning in his course occurred before exams, but
that occasionally we find ourselves learning the

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://iscap.info

most after they are graded and returned. Such

was my experience as an instructor after
administering the midterm exam in the Java
course and attempting to grade it. The exam was

like those I was given as an undergraduate
student in programming courses—some multiple-
choice questions, short answer questions, and a
larger programming problem to solve on paper.
Because cheating was reported to be an issue
with computer-based exams in the program, I
opted for a paper-based exam despite an

understanding that writing code on paper is
cognitively much different than writing it on the
computer.

The students’ exam submissions validated the
uneasy feelings I had in class watching them

during what was meant to be practice time. On
average, they missed more than half of the
multiple-choice questions, provided scattered
solutions to the short answer problems, and—
most significantly—left the larger programming
problem almost completely blank. I recall flipping
through exam pages to find mostly empty space

and leaving the pile an ungraded and unsolved
pedagogical puzzle on the living room sofa.

The exams and my difficulty grading them were a
clear call for course redesign. As I explained to
the students, we could either ignore the exam
results and continue working through the course

content as indicated in the syllabus, or we could
try something different. After careful

consideration, I offered the students the
opportunity to complete the programming portion
of the exam as homework, redesigned the
syllabus, and reformulated a pattern for class

lesson plans.

Adapted Course Design
Most of the students in the course could not solve
the programming problems presented to them or
recall parts of the Java language in isolation. It
was as though they were asked to hold a

conversation in a foreign language without being
able to remember any of the vocabulary. In
addition, they seemed unable to separate the
logic needed to solve the problems from the

language itself.

It was my goal that by the end of the course the

students be able to solve programming problems
presented to them using the Java language. With
this goal in mind and an awareness that the
students still perceived programming as alien, I
redesigned the syllabus. The post-midterm
syllabus shown in Figure 3 had object-oriented

concepts removed and additional time devoted to
each of the basic programming control structures.

After debriefing the students on the midterm

exam and its implications for the rest of the
course, we learned how to represent the solution
to problems using logical flow charts. Examples of

flow charts used in class appear in Appendix A.

Adapted Course Delivery
The revised lesson plan format is shown in Table
3. After discussing solutions to the post-class
questions and reviewing the programming
problem from the previous class, students were

given paper copies of one or two flow charts that
illustrated the logical flow of solutions to
problems.

Figure 3: Post-Midterm Java Syllabus

Before any code was written, we discussed the
logic shown in the flow charts. What followed was

a demonstration of a programming solution to
one of the flow charts and time for students to
devise solutions on their own or in pairs. I
observed the students’ work and offered feedback
before returning to the instructor’s station to
demonstrate a programming solution to the
problem.

Item Minutes

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://iscap.info

Administration 5

Solutions to post-class questions 5

Discussion of previous problem 10

New problem and flow chart 15

Student practice time 15

Solution demonstration 10

Lab time for homework 10

Post-class questions 5

Table 3: Java Post-Midterm Lesson Plan

The remainder of the class time was reserved for
students to work on the current homework
assignment and complete the post-class

questions. During this time students often asked
questions and received feedback. This pattern of
instruction continued for the rest of the semester.

Discussion
With these adaptations in course design and

delivery came a change in the classroom
atmosphere evident in the practice and
homework time provided to the students. Blank
editors were replaced with attempts at solving
programming problems that facilitated feedback
and a better understanding of course concepts.

The introduction of flow charts let us study the
logical flow of programming control structures
separately from the language itself. This
approach has been adopted with success in
computer science classrooms (Myers, 1986).
More importantly, however, it enabled a more

problem-driven approach to the delivery of each

subsequent lesson.

A problem-driven approach to technical topics is
essential for fostering a Growth Mindset. This
approach was augmented by the additional time
provided to students to work on problems and

homework in class. These features of the Growth
Mindset approach, including a focus on exploring
concepts through problem solving, collaboration,
and time to work through programming mistakes
led to a change in student motivation in the class
evidenced by the effort they showed on
subsequent homework assignments and the final

exam.

The atmosphere of the class had evolved from
one of fear of unfamiliar technical topics to one of
motivated curiosity. Students expressed that
while programming was difficult that it seemed
useful to them and they liked that they “were

actually doing something” in class. One student
described the joy of “hitting the button in Eclipse”
and seeing successful results that spurred her
onward. As further evidence of the success of the
course redesign, several students that were not

graduating in the fall semester asked me if I

would be teaching another programming course
in the spring because they wanted to continue to
learn.

5. PYTHON PROGRAMMING: A GROWTH

MINDSET APPROACH

Many of the Growth Mindset characteristics
implemented in the Java course resulted in
drastic improvement of student motivation and

performance. When considering the design of a
Python course for the spring semester, I reflected
on the effectiveness of applying Growth Mindset
techniques and wanted to further extend their
application.

Course Design
One of the key characteristics of a Growth
Mindset approach that had not been fully realized
in the Java class was that of developing a positive
attitude towards failure. Students were given the
opportunity to practice making mistakes in longer
practice periods, but the effectiveness of these

experiences had not been maximized. The Python
course was thus designed with a focus on allowing
for time to mistakes, debugging, and developing
positive attitudes toward student failure.

The Growth Mindset theory informed this design
such that class time would be taken to directly

address the debugging process. As an instructor,
I wrote specific incorrect programming snippets

so that students could develop a repertoire of
programming issues. In doing so, I was able to
model a positive attitude toward failure and
reframe students’ programming errors as part of

the learning process, rather than insurmountable
roadblocks.

The Python course was thus designed as a
problem-driven course in which students
developed a positive attitude towards making
mistakes and, as a result, gained further

motivation for learning. The course as a whole
was presented to the students as an opportunity
to solve data analytics problems using a
programming language. The end goal of the class

was to be able to perform preliminary analysis on
data obtained from Twitter using Python.

Course Delivery
The delivery of each class lesson followed a
similar approach to that of the redesigned Java
course with some important modification. An
example lesson plan is shown in Table 4.

Item Minutes

Administration 5

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://iscap.info

Solutions to post-class questions 5

Discussion of previous problem 10

New problem with errors 15

Student practice time 15

Solution demonstration 10

Lab time for homework 10

Post-class questions 5

Table 4: Python Lesson Plan

A problem-driven approach to each class was
taken but supplemented by the deliberate
inclusion and discussion of errors in the
preliminary solutions presented. I followed the
same pattern for each new problem presented by

discussing different solutions, making mistakes
while programming solutions, and finally arriving
at a feasible solution. Mistakes were made part of

the process in an organic way such that I was able
to react to the errors in the Python terminal so
that students could not only see solutions, but the

process involved in finding solutions. I took
special care to react to errors as though they were
additional puzzles to be solved, rather than
failures that reflected on my competence as a
programmer.

Discussion

The focus on modeling an attitude towards
making mistakes further improved student
motivation and performance in the Python course,
as evidenced by the experiences I had during the
student practice time. As I walked around the

classroom to observe student progress, I saw
effort from every student to solve the problems

presented, even from those that had been the
least confident in the Java course. The students’
efforts allowed me to create a mental catalog of
student approaches to the programming
problems that I shared when returning to the
front of the classroom. Demonstrating the

students’ different approaches to their peers
reemphasized our focus on concepts over the
memorization of programming facts.

Further evidence of an improvement in
motivation and confidence was demonstrated by
the increase in frequency of student questions

and comments in class. One student that had

frequently expressed anxiety to me in office hours
about the course material confidently responded
to a demonstration of a Python concept in class
that she had found a different method to solve
the problem that made more sense to her. Her
resourcefulness and her willingness to share a

different approach in front of the class indicated
to me that she had experienced tremendous
growth in confidence and motivation as a student.

Another student that had struggled with the

material in the Java course was observed
spending ten to fifteen minutes after class
debugging and asking additional questions.

6. RESULTS AND DISCUSSION

The Java and Python courses and their
accompanying course design, redesign, and
analysis were an informative exercise in reflective
teaching practice that explored the effectiveness

of applying Growth Mindset concepts to computer
programming courses and technical material, in
general. It would be difficult to compare student
performance on course assessments in a Java and
Python course because of the differences in
material. However, the increase in student

motivation and confidence that occurred after the
midterm in the Java course and throughout the
Python course was evident in the frequency and
depth of student participation and motivated
curiosity in both courses. Students that had little
to no prior programming experience transformed
from timid students with negative self-

perceptions about their technical abilities into
more confident problem solvers that had
developed a willingness to try and make mistakes
while learning difficult material.

These experiences are not presented to say that
applying Growth Mindset techniques will

guarantee automatic success and increased
performance in students that lack confidence with

technical courses. They are, however, evidence
that adopting such an approach can provide a
framework for students to build confidence and
increase motivation and effort when confronted

with more challenging material.

It would be prudent to point out that this paper is
an account and recollection of course curricular
adjustments and design as they relate to meeting
the challenges of under-motivated and under-
performing students, in situ. As such, this

account constitutes a post hoc account rather
than acute a priori design. While we are
convinced that, for a student population with not
simply a “normal distribution,” but rather one

with an appreciable component of students with
incomplete study habits, there is an urgent
imperative to adopt the growth mindset to

establish the conditions that might lead to
success. A follow-on to our experiences here
would be a rigorous experimental design which
might establish more than the notional and
perhaps conjectural ascription of effects to the
Growth Mindset in the case report. We do not

demure on the improvements we observed, but

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 9
http://iscap.info

we also do not control for other conflating

influences which may have also been present.

7. CONCLUSION

In this paper, we reviewed the progressive

redesign of a course as a response to an occasion

warranting pedagogical attention. Given

challenges such as low motivation, deficient study

habits and orientation, and a lackluster response

to straight-forward pedagogy, the Java class

described provided the impetus to explore the

lessons of the Growth Mindset. Many of those who

influence the decision to embrace instruction and

courses leading to efficacy and competency in

STEM will often have an intellectual orientation to

the perceived benefits of garnering these

competencies but lack the background in

experience to orient their mindset and habits to

comprehension, growth, and excellence.

The changes in course design that most affected

student motivation and performance were the

implementation of a problem-based approach and

the emphasis on the proper approach to errors

and failure. Positioning programming as a

problem-solving activity incited student curiosity

and alleviated the fear that many of them

associated with using the computer as a

programming tool. Modeling an appropriate

response to failure and errors as part of the

programming process also encouraged students

to work through solutions, rather than give up

when something went wrong.

The challenges described, ameliorations

attempted, and overall improvements we can

ascribe to the Growth Mindset are offered as a

case demonstrating both the progress of students

and of the reflective realizations arising in the

educator. We propose that the Growth Mindset

holds equal promise for students and educators

alike in maintaining a reflective practice designed

to track the process of growth and habit of growth

apart from any magnitudinal benchmarking.

This is not to say that a finite set of material

should be accomplished within the timebox of a

term. What we do observe is that a Growth

Mindset allows the student and instructor to put

“first things first” such that the processes for

comprehension and improvement area

paramount and the “quantity” of accomplishment

would concomitantly follow.

We encourage colleagues to explore the Growth

Mindset further for themselves, try some of it out,

and perhaps report back in their own studies and

cases. Far too many students are grasping for the

promise of STEM and falling short when their

habits are not matched to the rigor of

engagement and perseverance required for

excellence. We have found early promise in the

principles of the Growth Mindset.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the
students of the Java and Python courses that
provided post-course reflections.

9. REFERENCES

Bell, D. (2016). The reality of STEM education,
design and technology teachers’ perceptions:
A phenomenographic study. International
Journal of Technology and Design Education,
26(1), 61-79.

Boaler, J. (2016). Mathematical Mindsets. Jossey-

Bass, San Francisco, CA.

Brown, R., Brown, J., Reardon, K., & Merrill, C.
(2011). Understanding STEM: current
perceptions. Technology and Engineering
Teacher, 70(6), 5.

Breiner, J. M., Harkness, S. S., Johnson, C. C., &

Koehler, C. M. (2012). What is STEM? A

discussion about conceptions of STEM in
education and partnerships. School Science
and Mathematics, 112(1), 3-11.

Charette, R. N. (2013). The STEM crisis is a myth.
IEEE Spectrum, 50(9), 44-59.

Dalbey, J., & Linn, M. C. (1985). The demands
and requirements of computer programming:

A literature review. Journal of Educational
Computing Research, 1(3), 253-274.

Dweck, C. S. (1986). Motivational Processes
Affecting Learning. American Psychologist,
41(10, 1040-1048.

Dweck, C. S. (2008). Mindset: The new

psychology of success. Random House
Digital, Inc.

Foltz, L. G., Gannon, S., & Kirshmann, S. L.
(2014). Factors that Contribute to the
Persistence of Minority Students in STEM
Fields. Planning for Higher Education Journal,
42(4), 1-13.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 10
http://iscap.info

Gupta, A. K., & Govindarajan, V. (2002).

Cultivating a global mindset. Academy of
Management Perspectives, 16(1), 116-126.

Jenkins, T. (2002, August). On the difficulty of

learning to program. In Proceedings of the
3rd Annual Conference of the LTSN Centre for
Information and Computer Sciences (Vol. 4,
No. 2002, pp. 53-58).

Maurer, T. J., Wrenn, K. A., Pierce, H. R., Tross,
S. A., & Collins, W. C. (2003). Beliefs about
‘improvability’ of career‐relevant skills:

relevance to job/task analysis, competency
modelling, and learning orientation. Journal
of Organizational Behavior: The International
Journal of Industrial, Occupational and
Organizational Psychology and Behavior,

24(1), 107-131.

McGrath, R. G., Mac Grath, R. G., & MacMillan, I.

C. (2000). The entrepreneurial mindset:
Strategies for continuously creating
opportunity in an age of uncertainty (Vol.
284). Harvard Business Press.

Murphy, L., & Thomas, L. (2008). Dangers of a
fixed mindset: implications of self-theories

research for computer science education. In
ACM SIGCSE Bulletin (Vol. 40, No. 3, pp. 271-
275). ACM.

Myers, B.A. Visual Programming, Programming
by Example, and Program Visualization: A
Taxonomy. Proceedings of the SIGCHI

Conference on Human Factors in Computing

Systems, 59-66.

Pea, R. D., & Kurland, D. M. (1984). On the

cognitive effects of learning computer
programming. New ideas in psychology, 2(2),
137-168.

Schultze, U. (2000). A confessional account of an
ethnography about knowledge work. MIS
quarterly, 3-41.

Schute, V. J. (2008). Focus on Formative
Feedback. Review of Educational
Research, 78(1), 153-189.

Silva, E. & White, T. (2013). Pathways to

Improvement: Using Psychological Strategies
to Help College Students Master
Developmental Math. Carnegie Foundation
for the Advancement of Teaching Report

Stanford, California.

Spencer, L. M., & Spencer, S. M. (1993).

Competency at work. New York: John Wiely
& Sons, 5.

Terenzini, P. T., Springer, L., Yaeger, P. M.,
Pascarella, E. T., & Nora, A. (1996). First-
generation college students: Characteristics,
experiences, and cognitive development.
Research in Higher education, 37(1), 1-22.

Trotter, A., & Ellison, L. (1997). Understanding
competence and competency. School
Leadership for the 21st Century.–London:
Routledge, 36-53.

Weick, K. E. (1998). Introductory essay—

Improvisation as a mindset for organizational
analysis. Organization science, 9(5), 543-

555.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857

Norfolk, Virginia USA v4 n4641

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 11
http://iscap.info

Appendix A: Problem Flow Charts

