
2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 1
http://iscap.info

Software Concepts Emphasized In

Introductory Programming Textbooks

Kirby McMaster, Ret

kmcmaster@weber.edu

Brian Rague

brague@weber.edu

School of Computing
Weber State University

Ogden, UT 84408

Samuel Sambasivam

ssambasivam@apu.edu

Department of Engineering and Computer Science
Azusa Pacific University

Azusa, CA 91702

Stuart L. Wolthuis

stuart.wolthuis@byuh.edu

Faculty of Mathematics and Computing

Brigham Young University-Hawaii
Laie, HI 96762

Abstract

In this research study, we performed a content analysis of selected introductory programming
textbooks for three languages to examine which software development concepts are emphasized in
these books. Our goal was to determine which concepts are considered to be most representative of
software development based on the topics emphasized by the textbook authors. We counted how

often programming words appeared in samples of C++, Java, and Python books. We discovered which
concepts are consistently supported for all three languages. We also noted those concepts that are
favored by just one or two languages. Our summarized results lead to several conclusions that are

relevant to the choice of a language for an introductory programming course.

Keywords: Java; C++; Python; programming; CS1; CS2; content analysis;

1. INTRODUCTION

Two current questions in Computer Science are:
(1) What concepts should be taught in an

introductory programming course, and (2) What
language should be taught in the course?
Debate on these questions has continued for
decades, with no clear resolution in sight

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 2
http://iscap.info

(Brilliant & Wiseman, 1996; Siegfried, Chays, &

Herbert, 2008; CC 2001; CSC 2013). The two
questions are related, in that various
programming languages historically have been

designed based on differing conceptual
frameworks.

The early years of computing saw advances in
programming from machine language to
assembly language to higher-level languages
(such as FORTRAN and COBOL). The ability to
give instructions to a computer in a language

closer to the problem domain is one of the
greatest inventions in computing. When
employees learned how to program within the
work environment, little attention was paid to
sound programming concepts and practices

because of the coding flexibility afforded by

higher-level languages.

As the next generation of higher-level languages
was developed (e.g. Algol and PL/I), designers
took advantage of previous experience to
consider a wider range of language options.
During this period, a few languages were
developed specifically for teaching programming

(e.g. Basic and Pascal). The availability of
languages designed for a variety of purposes
encouraged teachers to present programming
concepts beyond simple language-specific
syntax features.

Languages were developed using different

computational models, including functional

languages (e.g. LISP, Haskell, Scheme) and
logical languages (e.g. Prolog). In the relational
database world, procedural languages (e.g.
relational algebra) and non-procedural
languages (e.g. SQL) were considered and
implemented. Structured programming concepts

were promoted as best practices to develop and
maintain evolving complex business
applications.

Object-oriented languages C++, Java and
Python evolved from C or special purpose web
and scripting languages. In the current
academic environment, the above three object-

oriented languages are among the most popular

candidates for teaching introductory
programming (Guo, 2014).

The decision about which programming
paradigm to teach beginning students influences
the choice of introductory language. The
paramount question for an effective introductory

programming course remains "What concepts to
teach?", followed by "Which language best

supports these concepts?". The increased

demand for programming courses for liberal arts
students has led to the development of what are
termed CS0 courses (Sooriamurthi, 2010). The

preferred programming language for a CS1 or
CS2 course for Computer Science majors is
often different from the language taught to non-
majors (Hertz, 2010).

Purpose of this Research
Many research studies have been performed in
recent years on which language is best for an

introductory programming course (de Raadt,
Watson, & Toleman, 2002). In an effort to
contribute to this discussion, our research
focuses on C++, Java, and Python, which are
common CS1 and CS2 languages. Rather than

argue the merits of these languages for teaching

programming, we performed a content analysis
(Krippendorff, 2012) of C++, Java, and Python
textbooks to determine how well they support
teaching fundamental programming concepts.

Our primary assumptions are that the
framework of the author is reflected by the
words used frequently in the textbook, and that

the framework of interest is one that is
appropriate for an introductory programming
course. From the author's choice of words, we
can judge how well the textbook will contribute
to the generally recognized objectives of an
introductory programming course.

2. METHODOLOGY

This section of the paper describes the
methodology used to collect word frequency
data from selected C++, Java, and Python
textbooks. The words we are searching for
represent important concepts for an introductory
programming course. In this study, we did not

start with an initial list of concepts. We recorded
all words we found in the books, and eliminated
those that did not relate to computer
programming.

Sample of Textbooks
We collected a sample of 5 C++ books, 5 Java
books, and 7 Python books. We included more

Python books because they tended to be
shorter. We wanted our sample to include
popular books in all three languages. To reduce
research costs, we chose textbooks that were
available on the Internet and could be
downloaded as PDF files. For example, we
obtained C++ books by Prata (2005) and Lafore

(2002), Java books by Schildt (2007) and Wu
(2010), and Python books by Lutz (2011) and

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 3
http://iscap.info

Zelle (2002). Overall, we obtained a fairly

representative sample of books, but some were
older editions.

Convert PDF Files to Text Files

To perform word searching and counting, Adobe
Reader provides a menu option to convert the
contents of a PDF file into a text file. We used
Adobe Reader to create a text file for each of
the textbooks in our study.

We noticed that the text file versions of the
books included many character strings

containing digits, punctuation, and other non-
alphabetic symbols. To simplify our counting of
concept words, we wrote a Python program that
(after changing C++ to CPP) removed all non-

letter symbols except apostrophes, and replaced
them with blank characters.

We included apostrophes to allow contractions
(e.g. don't, g'day) to be counted as words. We
considered allowing hyphens, but they were not
used consistently by the authors (e.g. floating-
point vs. floating point). Our Python program
also converted all letters to lower-case.

Since we were searching for words that

represent programming concepts, our Python
program included a function to remove most of
the words on Fry's list of 100 most frequent
English words (UEN, 2015). A few of Fry's top
100 words can be interpreted in a programming

context (e.g. number, long), which we retained.
Instead, we modified the frequent word list to

include some non-programming words from
Fry's second 100 words (e.g. only, most). The
total number of distinct words on our common
word list was 110. By screening out common
words, we shrunk the number of original words
by more than 40%.

In the Python program, we also added a second
function to convert many plural nouns and verbs
to singular form. This reduced the number of
distinct words further, since only the singular
forms appeared in the generated text files. Our
Python program provided a filtered set of text
files consisting only of letters (and apostrophes),

blanks, and substantially fewer words.

Word Groups for Concepts
A single programming concept can be expressed
in more than one form. For example, a noun
concept can be presented in singular or plural
form (e.g. variable, variables). Verbs can also
be written in singular or plural form, as well as

with various tenses (e.g. solve, solves, solved,

solving). Often, the same concept is described

by both a noun and a verb (e.g. inheritance,
inherit). In some cases, synonyms representing
similar ideas can be used to represent a concept

(e.g. record, structure). Some concepts are
written not as a single word but as a sequence
of words (e.g. structured programming).

Our goal was to count how often an author
referred to a programming concept, but our
counting software was designed to count
individual words. For this reason, we defined a

word group for each concept. In this study, a
word group consists of a set of nouns and verbs
that represent the same concept. We
occasionally included synonyms in the same
word group. To get a textbook count for a

concept, we summed the frequencies for each of

the words in the word group.

Word Counts and Word Rates
We used a program called TextSTAT (Huning,
2007) to obtain word counts for all words in our
modified text files. With TextSTAT, a "Corpus" is
created to hold a list of text files to examine
simultaneously. We defined a corpus for each

programming language: C++, Java, and Python.
We linked each corpus to the transformed
textfiles for the language. The total word counts
for the three languages were nearly the same,
having about 900,000 words for each language.
We recorded the frequencies for each word and
combined them into counts for word groups.

Although total word counts were close for each
language, the sets of textfiles for each language
do contain different total numbers of words. The
Java books have a slightly greater total word
count than the Python and C++ books. To
standardize the counts, we converted each word

count for a concept to a word rate. The rate we
chose was "per 100,000 words". That is, we
divided the concept word count by the total
number of words in the set of textfiles for the
language, and then multiplied by 100,000.

For example, the 5 C++ textfiles contained a
total of 868,902 words. The word count for

object in these files is 10,264. This count is

rescaled to a word rate as shown below:

word rate = (10,264/868,902) * 100,000 =
1,181.3

This indicates that the object concept is
mentioned 1,181.3 times per 100,000 words in
the C++ files. Word rates were calculated for

each concept in each language.

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 4
http://iscap.info

3. ANALYSIS OF DATA

The purpose of this research is to distinguish the
frequency in which programming concepts

appear in textbooks for C++, Java, and Python.
For every concept, we counted the number of
occurrences of each word group member in the
textbooks. Prior to obtaining the results
presented below, our samples of textbook words
were filtered by replacing non-letter characters
with blanks, removing common English words,

and converting plural nouns and verbs to
singular form.

Word Frequency Distributions
Selected statistics for the word frequency
distribution for each language are shown in

Table 1 (all tables located in the appendices).

The samples consisted of 868,902 C++ words,
939,851 Java words, and 902,702 Python
words. Most of these words are repeated
multiple times in the textbooks. For example, in
the C++ sample, the maximum frequency word
is function, which appears 18,073 times. The
maximum frequency words are class (18,009

times) in the Java books and python (10,946
times) in the Python books.

The TextSTAT program uses the term word form
to refer to a specific word string, such as object,
that represents one word. The total number of
word forms for each language are given in Table
1. Note that the Java sample has the greatest

number (26,587) of word forms and also the
greatest number of word forms (11,120) that
appear just once.

A surprisingly large number of words have a
frequency of 1. Many of these words were not
actual words, but consisted of several words

concatenated together into a single string. We
suspect that this anomaly is due to an imperfect
conversion of PDF files into text files and the
extensive use of variable names in programming
texts.

When we checked word counts for each of the 5
Java books separately, we observed that one of

the books had a noticeably larger number of

words having a frequency of 1. Since we are
looking for frequent words that represent
programming concepts, words that appear only
once should have little effect on the word counts
of interest. However, a large number of
unduplicated words can slightly bias the word

rates calculated from word counts. Rather than
remove this Java book having the large number
of distinct words, we chose to ignore all words

having a frequency of 1 when performing our

word rate calculations. This reduced the total
word counts for C++, Java, and Python to the
values shown on the bottom line of Table 1.

Word Rate Distribution
Since our focus in this paper is on frequent
words in the textbooks, we need to provide a
criterion for determining if a word is frequent.
The actual word frequencies range from 1 up to
a maximum for each language. In C++ the
maximum frequency is 18,073 for function.

Because the total word counts differ for each
language, we rescaled word frequencies into
word rates as described above. Our criterion for
defining frequent words involves setting a
threshold word rate for frequent words.

Table 2 describes the distributions for C++,

Java, and Python in terms of word rate
intervals. If a frequent word were defined to be
one with a word rate above 800 (words per
100,000 words), then there would be 10 + 7 +
3 = 20 frequent words (not all distinct). These
20 frequent words are not uniform across
languages. For example, the word object has

word rates above 800 for C++ and Java, but not
Python.

In this paper, we chose to define a frequent
word as one with a word rate above 250. This
gives us a reasonable number of words to study
for each language and across languages.

Not all frequent words are programming words.

The words example, chapter, using, and same
are frequent for all three languages, but we do
not interpret these words as programming
concepts.

Consistently Frequent Concepts
We further define a word to be consistently

frequent when it is frequent for all three
languages. The consistently frequent
programming words, together with their word
rates for C++, Java, and Python, are listed in
Table 3. The words are ordered by decreasing
average word rate. Because these words are
used frequently by authors for all three

languages, they represent a measure of
agreement on important programming concepts
irrespective of language.

The most frequent programming word across all
three languages is class, which is a keyword for
each language (shown in bold) and also the
most frequent Java programming word. The

most frequent C++ programming word is

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 5
http://iscap.info

function. The most frequent Python word is

python. However, function and python are not
consistently frequent. Of the 16 programming
words in Table 3, the C++ word rates are

highest for 7 words, 3 words have the highest
rates for Java, and the remaining 6 words have
the highest rates for Python.

The OOP words class and object have very high
rates for C++ and Java. This suggests a
substantial emphasis on OOP in the Java and
C++ books. For most Table 3 words, the rates

for C++ and Java are fairly similar.

The frequent word type has a lower word rate
for Python, where data types are dynamic and
are not explicitly defined. The frequent word list

has a higher word rate in Python because
(variable size) lists are used in place of (fixed

size) arrays. File has a higher Python word rate,
perhaps due to the emphasis on multimedia in
some Python books.

Six of the Table 3 words (value, string, type,
number, data, list) refer to data characteristics
and data structures. Three of the words
(program, code, line) represent program

segments. Name can refer to data (e.g.
variables) or program components (e.g.
functions).

Language Dependent Concepts
A number of programming words are frequent in

one or two languages but not the third. For
example, function is a frequent word in C++

and Python, but not in Java. We refer to these
words as language-dependent programming
concepts. These words reflect variation between
languages about words that are important.
Table 4 lists 18 programming words that have a
word rate range (high minus low) above 275

and at least one word rate below 150.

For example, the word reference has word rates
of 213.4 for C++, 85.3 for Java, and 209.7 for
Python. This word is not included in Table 4
because the range of word rates is below 275.
The purpose of this constraint is to highlight
words with language rate disparities that are

meaningful.

Excluding language names cpp (representing
C++), java, and python, the Table 4 words
include 3 C++ keywords, 4 Java keywords, and
1 Python keyword. Being a keyword can have
some effect on word rates, especially if the word
is used in sample code (e.g. public in C++ and

Java). The importance of some keywords (like

class) extends throughout programming. We

now direct our attention to Table 4 words that
are not keywords.

In C++ books, method is often replaced by the

two-word term member function to designate
functions that are part of a class. This can
explain the high C++ rates for function and
member. C++ uses a compiler, while Java and
Python use a run-time environment or
interpreter.

In C++ and Java, an array is more frequent

than a (linked) list. Pointers are common in C
and C++ for indirect addressing. Declaration of
variables is required in C++ and Java, but not in
Python. Threads and events are built into the

Java language, but not C++.

If the language in a programming course

switches from C++ to Java, then some of the
frequent C++ concepts will not be well-
supported in the Java books. Similarly, if the
language switch is made from Java to Python,
more programming concepts will be lost.

Less Frequent Concepts
We have presented programming words that

have a word rate above 250 for at least one
language. In this section, we examine selected
non-frequent words representing concepts from
object-oriented programming, structured
programming, and software engineering. We

might expect a majority of these concepts to be
included in the content of an introductory

programming course.

Object-oriented programming concepts have
appeared often in Table 3 and Table 4. The OOP
words class and object have high word rates in
all three languages. In Table 5A, we show word
rates for 3 defining characteristics of OOP.

Encapsulation and polymorphism have low word
rates for all three languages. Inheritance does
get some respect from C++ authors, with a
word rate above 100. Maybe there is more
discussion of class hierarchies in the C++ books.
Encapsulation certainly should have higher

rates, since it is a critical concept in modular

programming and especially for classes.
Polymorphism is difficult enough to pronounce
much less explain in a textbook.

Table 5B lists 10 structured programming
concepts. The first four Table 5B words--
sequence, selection, iteration, and recursion--
are the formal names for classic control

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 6
http://iscap.info

structures. The next two words, branch and

loop, are informal terms for selection and
iteration, respectively. In all three languages,
loop is much more frequent than iteration, but

branch is not a popular substitute for selection.

The block concept has been central to structured
programming since the days of Algol. Word
rates for block are near 100 for C++ and Java,
but smaller for Python. Python uses indentation
instead of special symbols (e.g. braces) to
designate the start and end of a block (or

paragraph). The words argument and parameter
are closely related. Argument is a frequent word
for C++, but parameter has word rates below
200 for all three languages.

Procedure is a forgotten term in current
language textbooks, perhaps due to the residual

effects of the decision by C language designers
to implement only functions. This design
decision persists in C++, Java, and Python for
various reasons.

The 16 software engineering concepts in Table
5C include project stages, activities, and
byproducts that do not directly involve writing

code. This list includes the frequent Java word
implementation and the frequent C++ and
Python word error. These words were not
included in Table 4 because their range of word
rates was below 200. We might expect some of
these concepts to receive less emphasis in an

introductory programming course.

The first four words--analysis, design,
implementation, and maintenance--describe the
stages of the traditional software development
life cycle (SDLC). Implementation (which
includes writing code) has word rates between
102.6 and 252.7 for all three languages. Design

has a word rate above 100 in the Java books.
Maintenance and quality are almost an
afterthought in all textbooks. Based on these
books, don't hire an introductory programmer to
do maintenance.

Additional observations about the software
development word rates include the following.

In software development, requirements and
specifications are usually discussed together, in
response to a problem request from a client.
One formal SDLC document that is often
prepared is a Software Requirements
Specification (IEEE, 1998).

The word documentation does not appear often

in C++ books (rate just above 25), but it does

in Python books (rate almost 200). What does

this say about the mindset of the authors of
these textbooks? From our experience, many
computer programmers do not like to document

their work.

The word rates for abstraction are very low. The
term may be too general to be used frequently
in introductory programming books. This
thought ignores arguments presented in the
article "Is Abstraction the Key to Computing?"
(Kramer, 2007).

The model (and modeling) concept has rates
below 100, which appears low considering that
most design work requires some form of
modeling for both code and data. Modeling is

the realization of abstraction. In introductory
courses, much of the design work is usually

provided by the instructor. The students focus
on writing the programs.

Algorithm has a C++ word rate of almost 160,
indicating that C++ books spend a reasonable
amount of time explaining the nature of
algorithms. Maybe this is one reason why C++
has a reputation for being "harder" than Java

and Python.

The word rates for test are above 100, but the
rates for debug are near 0. One possible
explanation for this difference is that test does
not imply that the programmer made a mistake,

whereas debug suggests that something needs
to be fixed. On the other hand, error has word

rates that almost qualify it as a consistently
frequent word. In commercial software
development organizations, initial debugging is
usually performed by the developers who write
the code. Formal testing is more likely to be
performed by specialized test groups, especially

when a suite of tests must be re-run whenever
the code is changed.

As a special note, if you want to teach students
about functional decomposition or data
decomposition, don't use one of these books.
Word rates can't get much lower than 0.3.

4. SUMMARY AND CONCLUSIONS

The choice of programming language for an
introductory Computer Science course influences
the concepts that will be emphasized in the
course. Discussion about which concepts to
teach in a first course and what language best
supports these concepts continues among
faculty and professional organizations. This

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 7
http://iscap.info

discussion has often led to the conclusion that

no language is best for all situations (CSC,
2013). Our work attempts to contribute to this
dialog by revealing which programming concepts

are supported in textbooks for C++, Java, and
Python.

We gathered a sample of textbooks that were
restricted to those available in PDF format,
converted the contents into text files, and then
screened the files to remove or transform
unnecessary material. We counted how often

words that represent programming concepts
appeared in the books, and then converted the
frequencies into word rates. From the
transformed data, we draw several conclusions.

A word is defined to be frequent for a language
if its word rate is at least 250 per 100,000

words in the textbooks for that language. We
found 16 programming words that are frequent
for all three languages. Two of the words with
the highest rates are class and object, which are
central concepts for object-oriented
programming. This list of concepts that are
supported across languages is a good start for

an introductory programming course.

We next searched for words that were frequent
in one or two languages, but not all three. These
words highlight differences between the
languages. The word function is very frequent in
C++ and Python, but not in Java. Java prefers

the term method. Java considers all functions

(and all code) to occur within a class. C++ uses
the combined term member function for
functions within a class, but C++ (and Python)
allow functions to be defined outside of a class.

With its history from C, C++ provides explicit
indirect addressing using pointers. Java makes

indirect addressing implicit through the use of
references. C++ and Java provide fixed size
arrays as a common data structure. Python uses
variable size lists (without mentioning the word
linked). C++ and Java have a character data
type, whereas characters in Python are
represented as strings of length 1. Each

language provides support for the above

concepts, using possibly a different name, and
sometimes involving a different underlying
implementation (e.g. arrays vs. lists).

Among the other concepts, Java supports
threads and events for real-time programming.
C++ and Java, but not Python, require a

declaration (name and type) for variables before
they can be used.in a program. For words that

are frequent in two languages, many of the

word rates for C++ and Java are comparable.
C++ and Java books seem to provide similar
support for most of the frequent programming

concepts. Python provides less support.

We also examined a selection of object-oriented
programming, structured programming, and
software development words that did not appear
on our most frequent word lists. On a word-by-
word basis, many of the comparative word rates
are interesting, with several results standing

out. Longer technical words (e.g. polymorphism,
iteration, requirement, and decomposition)
tended to have lower word rates, but there are
exceptions (e.g. selection vs. branch). Word rate
differences for test, debug, and error are hard to

explain. Hopefully, the extremely low rates for

abstraction, maintenance, and quality do not
persist into more advanced programming
textbooks.

Finally, both C++ and Java books provide
reasonable support for most of the frequent
programming concepts. Python provides less
support. The ultimate choice of language for an

introductory programming course must be
based on considerations beyond textbook
coverage of important concepts.

Future Research
Planned future research activities include:

1. Replicate this study with a larger, more
representative sample of textbooks.

2. Examine variation in word rates between
books within the same language.

3. Perform a similar study comparing textbooks
for other candidate languages for an
introductory programming course (e.g. PERL,
Ruby, Javascript, Ada, Scheme).

5. REFERENCES

Brilliant, S. S., & Wiseman, T. R. (1996, March).
The first programming paradigm and
language dilemma. In ACM SIGCSE

Bulletin (Vol. 28, No. 1, pp. 338-342). ACM.

Curricula, C. (2001). Computer Science. Final
Report, December, 15, 2001.

Joint, A. C. M. (2013). IEEE-CS Task Force on
Computing Curricula. Computer science
curricula.

De Raadt, M., Watson, R., & Toleman, M.
(2002). Language trends in introductory

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 8
http://iscap.info

programming courses. In Proceedings of the

2002 Informing Science+ Information
Technology Education Joint Conference
(InSITE 2002) (pp. 229-337). Informing

Science Institute.

Guo, P. (2014). Python is now the most popular
introductory teaching language at top us
universities. BLOG@ CACM, July, 47.

Hertz, M. (2010, March). What do CS1 and CS2
mean?: investigating differences in the early
courses. In Proceedings of the 41st ACM

technical symposium on Computer science
education (pp. 199-203). ACM.

Huning, M. (2007). TextSTAT 2.7 User’s
Guide. TextSTAT, created by Gena Bennett.

IEEE Computer Society. Software Engineering
Standards Committee, & IEEE-SA Standards

Board. (1998). IEEE recommended practice
for software requirements specifications.
Institute of Electrical and Electronics
Engineers.

Kramer, J. (2007). Is abstraction the key to
computing?. Communications of the
ACM, 50(4), 36-42.

Krippendorff, K. (2012). Content Analysis: An
Introduction to Its Methodology, 3rd Ed.
SAGE Publications.

Lafore, R. (2002). Object-Oriented
Programming in C++ (4th ed). Sams
Publishing.

Lutz, M. (2011). Programming Python (4th ed).

O'Reilly Media.

Prata, S. (2005). C++ Primer Plus (5th ed).
Sams Publishing.

Schildt, H. (2007). Java The Complete
Reference, 7th Ed. McGraw-Hill.

Siegfried, R. M., Chays, D., & Herbert, K. (2008,
July). Will there ever be consensus on cs1?.
In FECS (pp. 18-23).

Sooriamurthi, R. (2010). The essence of object
orientation for CS0: concepts without

code. Journal of Computing Sciences in
Colleges, 25(3), 67-74.

UEN (2015). High Frequency Words--Fry
Instant Words. Utah Education Network.

Retrieved Feb 21, 2017 from
http://www.uen.org/

UEN (2018). k-2educator/word_lists.shtml Utah
Education Network. Retrieved Feb 21, 2017
from http://www.uen.org/

Wu, C. T. (2010). An Introduction to Object-
Oriented Programming with Java (5th ed).
McGraw-Hill.

Zelle, J. (2002). Python Programming: An

Introduction to Computer Science. Wartburg
College Printing Services.

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 9
http://iscap.info

Appendices

Table 1: Word Frequency Distribution Summary

Statistic C++ Java Python

Textbooks 5 5 7

Authors 6 8 10

Total Words 868,902 939,851 902,702

Max Count 18,073

function

18,009

class

10,946

python

Min Count 1 1 1

Word Forms 17,328 26,587 21,644

Forms: count>1 11,716 15,467 14,620

Forms: count=1 5,612 11,120 7,024

PctForms:count=1 32.4% 41.8% 32.5%

*Words:count>1 863,286 928,749 895,678

 * Used to calculate word rates

Table 2: Word Forms by Word Rate

Word Rate C++ Java Python

800.0+ 10 7 3

400.0 - 799.9 18 15 19

200.0 - 399.9 49 40 43

100.0 - 199.9 97 121 113

50.0 - 99.9 190 218 228

25.0 - 49.9 326 325 372

* Words: count>1 863,286 928,749 895,678

 * Used to calculate word rates

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 10
http://iscap.info

Table 3: Consistently Frequent Programming Concepts

 (Rate > 250 for all 3 languages)

 Rates for keywords are shown in bold

 C++ Java Python

 Concept Rate Rate Rate Mean

1 class 1,929.0 1,939.1 641.9 1,503.3

2 object 1,188.9 1,163.7 629.2 994.0

3 value 1,019.1 835.8 675.0 843.3

4 program 890.1 913.1 688.4 830.8

5 string 855.0 857.1 529.2 747.1

6 type 861.7 782.7 370.7 671.7

7 file 571.3 551.4 890.4 671.0

8 line 450.8 498.9 611.8 520.5

9 number 597.7 543.6 415.9 519.1

10 name 493.1 481.7 580.0 518.3

11 call 552.1 486.3 494.6 511.0

12 data 523.5 412.0 394.3 443.3

13 list 302.1 358.1 568.2 409.5

14 code 374.7 310.5 433.0 372.7

15 element 443.9 254.6 288.6 329.0

16 input 267.0 251.6 296.0 271.5

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 11
http://iscap.info

Table 4: Language-Dependent Concepts

 at least 1 rate < 150, and range > 275
 Rates for keywords are shown in bold

 C++ Java Python

 Concept Rate Rate Rate Range

1 function 2,093.5 58.4 696.8 2,035.1

2 python 3.5 0.1 1,222.1 1,222.0

3 cpp 1,192.2 0.0 0.2 1,192.2

4 java 11.8 1,072.5 61.0 1,060.7

5 member 719.8 119.7 24.5 695.4

6 operator 776.6 146.9 133.2 643.4

7 array 641.4 486.7 34.4 607.0

8 public 197.7 621.0 38.9 582.1

9 pointer 551.0 17.3 11.3 539.8

10 module 10.5 5.7 461.2 455.5

11 thread 0.8 414.9 210.0 414.1

12 constructor 395.8 268.8 49.1 346.7

13 event 8.2 336.7 132.7 328.5

14 declaration 333.0 213.2 19.1 313.9

15 static 163.1 329.4 17.9 311.5

16 compiler 300.6 72.5 8.0 292.6

17 import 1.3 185.3 291.5 290.2

18 interface 64.9 341.0 161.7 276.1

Table 5A: Object-Oriented Programming Concepts

 OOP

Concepts

C++

Rate

Java

Rate

Python

Rate

Mean

1 encapsulation 6.3 5.4 5.9 5.9

2 inheritance 129.4 45.1 29.9 68.1

3 polymorphism 28.7 17.7 6.1 17.5

2018 Proceedings of the EDSIG Conference ISSN 2473-3857
Norfolk, Virginia USA v4 n4649

@2018 ISCAP (Information Systems & Computing Academic Professionals Page 12
http://iscap.info

Table 5B: Structured Programming Concepts

 StructProg C++ Java Python

 Concepts Rate Rate Rate Mean

1 sequence 98.0 97.7 121.8 105.8

2 selection 38.3 45.8 44.4 42.8

3 iteration 22.5 18.8 18.8 20.0

4 recursion 24.6 30.9 17.1 24.2

5 branch 3.2 6.9 4.1 4.8

6 loop 215.8 174.0 165.9 185.2

7 block 95.6 100.7 48.3 81.5

8 argument 436.8 181.8 184.6 267.7

9 parameter 154.2 179.2 116.7 150.0

10 procedure 3.6 6.4 4.8 4.9

Table 5C: Software Engineering Concepts

 Software Dev

Concepts

C++

Rate

Java

Rate

Python

Rate

Mean

1 analysis 10.8 11.4 16.7 13.0

2 design 74.6 112.1 45.7 77.5

3 implementation 147.3 252.7 102.6 167.5

4 maintenance 3.2 2.3 3.7 3.1

5 problem 128.2 123.9 94.3 115.5

6 requirement 24.1 11.5 14.6 16.7

7 specification 89.9 147.7 92.3 110.0

8 abstraction 7.4 6.2 4.8 6.2

9 model 41.7 80.8 50.8 57.8

10 algorithm 159.5 77.3 68.2 101.7

11 decomposition 0.1 0.3 0.1 0.2

12 test 122.1 136.1 122.1 155.8

13 debug 12.2 5.1 8.2 8.5

14 error 242.9 198.8 214.5 218.7

15 documentation 26.6 89.6 195.9 104.0

16 quality 4.3 2.9 3.1 3.4

