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Abstract  

 

The teaching of formal specifications plays a crucial role in the training of software engineering future 

professionals. Software failures can be detected in two major phases of the software development 
process: specification or modeling and programming. Taking into account that current students will not 
generate code in the conventional programming style, the verification and validation activities will also 
need to change significantly. In this paper, we propose to introduce formal methods in the context of 
Model Driven Engineering. Its underlying principles can be summarized as follows: all artifacts involved 
in a process can be viewed as models that conform to a particular metamodel, the process itself can be 
viewed as a sequence of model transformations and, all extracted information is represented in a 

standard way through metamodels. Model Driven Engineering will impact on software engineering 
curriculum, in both the body of knowledge and the structure of its courses. In light of this, metamodeling 
will have to be addressed from different visions. We propose to integrate metamodeling with algebraic 
specifications. The guiding thread of our approach is the Nereus Language, a Domain Specific Language 
for formal metamodeling.  We show how to gradually introduce formal methods in the Software 
Engineering curriculum.  Nereus can be linked to several demonstrators of theorems harnessing the full 

power of formal methods. A set of tools that support our approach is described. 
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1. INTRODUCTION 

The teaching of specifications and formal 
methods plays a crucial role in the training of 

software engineering professionals. Formal 
methods provide systematic and rigorous 
techniques to reduce ambiguities and 
inconsistencies in software development. 
However, formal methods are controversial and, 

in general, they are only applied in the 
development of critical software. Their detractors 
think that software failures are an inevitable evil 
and do not encourage the use of formal 
techniques to prevent errors. Other authors argue 
that making software without failures is 

expensive. The challenges to adopting them in 

the industry are related to problems of 

understandability and scalability. Within the next 
few decades, tools based on verification will be as 

useful and widespread for software development 
as they are today in critical systems (Beckert & 
Hahnle, 2014). In many curricula, the 
specification and verification courses are not 
mandatory and have a marginal presence. The 

current situation in the software industry is that 
great advances in software technology go hand in 
hand with spectacular software failures which 
could be resolved by applying formal techniques. 

Behind the specifications and formal methods 
exists a community that has developed theories, 

languages, methods, and tools, but the software 
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industry does not take advantage of them, in 

particular, to effectively address the software 
crisis (Astesiano, Kreowski,  & Krieg-Bruckner, 
1999). There is already a substantial body of 

research, tools and case studies demonstrating 
that it is possible to develop software as reliable 
as any other engineering product. To enhance the 
software industry, artifact analysis tools that 
support novel combinations of code analysis 
techniques, model checking, testing and 
theorems provers are emerging (Beckert & 

Hahnle, 2014). In addition, formal methods can 
fill the requirements of new software 
development technologies. For instance, moving 
to the Cloud requires new ways to protect data 
and privacy. As well, the paradigm of IoT requires 

analyzing complex software/hardware systems in 

the early stages of design, mainly in software 
systems that will be embedded in systems 
deployed in different places. In both situations, 
formal methods can help to solve these problems. 

Software failures can be detected in two major 
phases of the development process: specification 
or modeling, and programming. Taking into 

account that current students will not generate 
code in the conventional programming style we 
should adjust the verification and validation 
activities to new approaches (Cowling, 2015). In 
the future, Model Driven Engineering (MDE) 
becomes more widely applied (Brambilla, Cabot & 
Wimmer, 2017). MDE is a software development 

methodology that focuses on the use of models 
and model transformations to raise the level of 
abstraction and automation in software 
development, either to generate new software or 
to modernize legacy software. Model-driven 
principles can be summarized as follows: all 

artifacts involved in an MDE process can be 
viewed as models that conform to a particular 
metamodel, the process itself can be viewed as a 
sequence of model transformations and, all 
extracted information is represented in a 
standard way through metamodels. Model Driven 
Development (MDD) refers to forward 

engineering processes that use models as 
primary development artifacts. A specific 

realization of MDD is the Model Driven 
Architecture (MDA) proposed by the Object 
Management Group (OMG) in the context of 
object-oriented modeling (MDA, 2014) (OMG, 
2018). 

Metamodeling is crucial in Model-Driven 
processes and one of the most important changes 
in teaching Software Engineering will result in the 
need to move the focus from models to 
metamodels that describe the structure of a 
family of models and the transforming methods 

at metamodel level for mapping them into code. 

The testing activities need to change from code-

centric concepts to metamodel-based ones. It is 
important to reason about metamodels properly 
due to having errors in a metamodel leads to 

having errors in its model instances.  

The main obstacle so that MDE impacts on 
software development is the lack of human 
resources that, through adequate training, assess 
the power of them and transfer their experience 
to software development projects. The 
construction of metamodels is not well supported 

with established practices and methodologies. 

One of the most challenging aspects of teaching 
formal methods in undergraduate computer 
programs is that of finding the best approach to 

introducing the subject (Spichkova & Zamansky, 
2016). It is essential to gradually introduce 

students to formal methods from the early stages 
of teaching Software Engineering (Ishikawa, 
Yoshioka & Tanabe, 2015). In this paper we 
propose to teach concepts of Model Driven 
Engineering and, metamodeling by integrating 
semiformal specifications with algebraic 
specifications. The bases of this approach are 

introduced in the early stages of teaching. The 
guiding thread of our approach is the Nereus 
Language, a Domain Specific Language (DSL) for 
formal metamodeling (Favre, 2009) (Favre & 
Duarte, 2016).  We show how to gradually 
introduce formal methods going from the 

teaching of classes, relationships and object-

oriented models in elementary courses of 
Algorithms to the teaching of formal 
metamodeling in advanced courses of Model 
Driven Engineering. Nereus can be linked to the 
Common Algebraic Specification Language 
(CASL) and through it, to several demonstrators 

of theorems harnessing the full power of formal 
methods.  The main contributions of this work 
are: the Nereus language, a set of educational 
tools and a methodology to introduce formal 
specification in Software Engineering curriculum. 

The structure of the article is as follows. Section 
2 provides definitions and discussion on MDE. 

Section 3 introduces metamodeling concepts. 

Section 4 describes the syntax of the Nereus 
Language. In Section 5 a set of tools to make 
formal metamodeling feasible in practice is 
presented. Section 6 describes how to introduce 
algebraic specifications in undergraduate courses 
in a Software Engineering career and presents 

motivation remarking our contribution. Finally, in 
Section 7 we present conclusions. 
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2. MODEL DRIVEN ENGINEERING 

Model Driven Engineering is a software 
development methodology that focuses on the 
use of models and model transformations to raise 

the level of abstraction and automation in 
software development, either to generate new 
software or to modernize legacy software. 
Different acronyms are associated with model- 
driven developments: MBE (Model Based 
Engineering), MDE (Model Driven Engineering), 
MDD (Model Driven Development), MDA (Model-

Driven Architecture), MDSM (Model Driven 
Software Modernization) and ADM (Architecture 
Driven Modernization). Figure 1 shows the 
relation between the different acronyms. 

 

 

Figure 1. Model-driven Acronyms 

 

MBE is the branch of software engineering in 
which software models play an important role, 
being the basis of development. However, there 
is no direct link between the models and the 
generated software precisely defined through 
transformations. 

MDE can be viewed as a subset of MBE. It is the 
branch of software engineering in which 
processes are driven by models, i.e. models are 

the primary artifacts of different software 
processes. MDE has emerged as a new software 
engineering discipline which emphasizes the use 
of models and model transformations to raise the 

abstraction level and the degree of automation in 
software development. Productivity and some 
aspects of the software quality such as 
maintainability or interoperability are goals of 
MDE.  

MDD refers to forward engineering processes that 

use models as primary development artifacts. A 

specific realization of MDD is MDA (MDA, 2014). 

The outstanding ideas behind MDA are, 
separating the specification of the system 
functionality from its implementation on specific 

platforms, managing the software evolution from 
abstract models to implementations. Models play 
a major role in MDA, which distinguishes at least 
platform-independent and platform-specific 
models. An MDA process focuses on the 
automatic transformation of different models that 
conform to MOF (Meta Object Facility) 

metamodel, the standard for defining 
metamodels in the context of MDA (MOF, 2016). 
It provides the ability to design and integrate 
semantically different languages such as general-
purpose languages, DSLs and modeling 

languages in a unified way. MOF can be 

considered the essence of MDA allowing different 
kinds of artifacts from multiple technologies to be 
used together in an interoperable way. MOF 
provides two metamodels EMOF (Essential MOF) 
and CMOF (Complete MOF). EMOF favors the 
simplicity of implementation over expressiveness. 
The Eclipse Modeling Framework (EMF) was 

created for facilitating system modeling, 
metamodeling, and code generation (EMF, 2018). 
EMF started as an implementation of MOF 
resulting Ecore, the EMF metamodel comparable 
to EMOF. A variety of tools related to MDE are 
provided by EMF.  

MDSM is a particular form of reengineering for the 

technological and functional evolution of legacy 
systems that begins to be identified in the early 
21st century (Brambilla et al., 2017). It is based 
on model-driven processes of reverse 
engineering, restructuring and forward 
engineering. In the context of ADM, a set of 

modernization specifications is developed. ADM is 
defined as “the process of understanding and 
evolving existing software assets for the purpose 
of software improvement, modifications, 
interoperability, refactoring, restructuring, reuse, 
porting, migration, translation, integration, and 
service-oriented architecture deployment” (ADM, 

2018). 
 

3. FORMAL METAMODELING  

MDE will impact on software engineering 
curriculum, in both the body of knowledge and 
the structure of its courses. In light of this, 
verification and validation will also change 

significantly and formal metamodeling will have 
to be addressed from different views. 

The essence of MDA is the metamodel MOF 
allowing interoperability from multiple 
technologies. It is important to formalize and 
reason about MOF metamodels and we propose 
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to exploit the strong background achieved by the 

community of formal methods.  

The MOF modeling concepts are “classes, which 
model MOF meta-objects; associations, which 

model binary relations between meta-objects; 
Data Types, which model other data; and 
Packages, which modularize the models” (MOF, 
2006 pp. 2-6). MOF metamodels are specified by 
using restricted UML (Unified Modeling Language) 
class diagrams and annotations OCL (UML, 2017) 
(OCL, 2014). On the one hand, UML has the 

advantage of visualizing language constructs. On 
the other hand, OCL has a denotational semantics 
that has been implemented in tools allowing 
dynamic validation of snapshots. A major 
obstacle for specifying metamodels is that they 

must master two different languages, UML for 

capturing the domain structure and OCL for the 
definition of well-formedness rules. There are no 
guidelines to assist the metamodel construction 
through both paradigms. Cadavid, Combemale, 
and Baudry (2015) observe that all metamodels 
tend to have a small subset of concepts that are 
constrained by the OCL rules, most of them are 

loosely coupled to the underlying structure. 

Our main contribution is the integration of MOF 
metalanguage with formal specification 
languages. In this context, we consider that a 
formal specification technique must at least 
provide syntax, some semantics, and an 

inference system. The syntax defines the 

structure of the text of a formal specification 
including properties that are expressed as axioms 
(formulas of some logic). The semantics describes 
the models linked to a given specification; in the 
formal specification context, a model is a 
mathematical object that defines the behavior of 

the realizations of the specification. The inference 
system allows defining deductions that can be 
made from a formal specification. These 
deductions allow new formulas to be derived and 
checked. The inference system can help to 
automate testing, prototyping or verification.  

Following the previous considerations, we define 

Nereus, a formal metamodeling language, and 

processes for reasoning about MOF-like 
metamodels such as Ecore metamodels. 

It is important to remark that the instantiation of 
a metamodel produces models, which in turn are 
instantiated. So, having errors in a metamodel 
leads to having errors in its model instances. 

Besides, a model can be well-formed but still be 
incorrect. A combination of MOF metamodeling 
and formal specification can help metadesigners 
to address these issues. Current metamodeling 
tools enable code generation and detect invalid 
constraints, however, they do not find instances 

of the metalanguage (models). Formal methods 

offer rigor and precision while reducing ambiguity 
and inconsistency. Most MDE semiformal 
metamodels do not have support for typing 

metamodels and the notion of polymorphism at 
the metamodel level is imprecise due to the type 
of a metamodel is not defined. These are 
limitations for certain applications related to MDE. 
For instance, to have enough valid instances 
available is a requisite to test model 
transformations. Subtyping has consequences 

regards to reuse of models and metamodels and 
model transformations. 

 
4. THE NEREUS LANGUAGE 

Nereus provides modeling concepts that are 

supported by MOF and the UML Infrastructure, 

including classes, associations and packages and, 
mechanisms for structuring them. First, we 
describe the Nereus syntax (classes, associations, 
and packages) and some examples of Nereus 
specifications. Next, we present some aspects of 
the semantic of Nereus. 

Nereus Syntax 

Defining Classes 

Classes may declare types, attributes, 
operations, and axioms which are formulas of 
first-order logic. They are structured by different 
kinds of relations: importing, inheritance, 

subtyping and associations. Next, we show the 
syntax of a class in Nereus: 

 
CLASS className [<parameterList>] 
IMPORTS <importsList> 
IS-SUBTYPE-OF <subtypeList> 
INHERITS <inheritsList> 
ASSOCIATES <associatesList>> 

BASIC CONSTRUCTOR(S) <constructorList> 
DEFERRED 
TYPE(S) <sortList> 
ATTRIBUTE(S) <attributeList> 
OPERATION(S) <operationList> 
EFFECTIVE 
TYPE(S) <sortList> 

ATTRIBUTE(S) <attributeList> 
OPERATION(S) <operationList> 
AXIOMS  <varList>   
<axiomList> 
END-CLASS 

Nereus distinguishes variable parts in a 
specification by means of explicit 

parameterization. The elements of 
<parameterList> are pairs C1:C2 where C1 is the 
formal generic parameter constrained by an 
existing class C2 (only subclasses of C2 will be 
actual parameters). In particular, the binding C1: 
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ANY expresses a parameterization without 

restrictions and can be denoted by C1. The 
IMPORTS clause expresses client relations. The 
specification of the new class is based on the 

imported specifications declared in <importList> 
and their public operations may be used in the 
new specification. 

Nereus distinguishes inheritance from subtyping. 
Subtyping is like inheritance of behavior, while 
inheritance relies on the module viewpoint of 
classes. Inheritance is expressed in the INHERITS 

clause; the specification of the class is built from 
the union of the specifications of the classes 
appearing in the <inheritsList>. Subtypings are 
declared in the IS-SUBTYPE-OF clause. A notion 
closely related with subtyping is the 

polymorphism. Nereus allows us to define local 

instances of a class by the following syntax 
ClassName [rename <bindingList>] where the 
elements of <bindingList> can be pairs of 
identifiers nameTo as nameFrom separated by a 
comma. 

The BASIC CONSTRUCTORS clause lists the 
operations that are basic constructors of the 

interest type. Nereus distinguishes deferred and 
effective parts. The DEFERRED clause declares 
new types, attributes or operations that are 
incompletely defined. The EFFECTIVE clause 
declares types, attributes and operations 
completely defined.  

The ATTRIBUTES clause introduces, like MOF, an 

attribute with properties. OPERATIONS clause 
introduces the operation signatures, the list of 
their arguments and result types. Operations can 
be declared as total or partial. Nereus allows us 
to specify operation signatures in an incomplete 
way. Nereus supports higher-order operations (a 

function f is higher-order if functional sorts 
appear in a parameter sort or the result sort of f). 
In the context of OCL Collection formalization, 
second-order operations are required but 
NEREUS support higher-order.  

In Nereus it is possible to specify any of the three 
levels of visibility for operations (public, protected 

and private) and incomplete functionality denoted 
by an underscore in the operation signature.  

Defining Associations 

Nereus provides a component Association, a 
taxonomy of constructor types, that classifies 
binary associations according to kind 
(aggregation, composition, ordinary association), 

degree (unary, binary), navigability 
(unidirectional, bidirectional) and, connectivity 
(one-to-one, one-to-many, many-to-many) 
(Figure 2).  The component Association provides 

Relation Schemes that can be used in the 

definition of concrete associations by instantiating 
classes,  

 

Figure 2. The Component Association 

roles, visibility, and multiplicity. Associations can 
be restricted by using static constraints in first- 

order logic. New associations can be defined by 
the ASSOCIATION construction. The IS clause 
expresses the instantiation of 
<typeConstructorName> with classes, roles, 
visibility, and multiplicity. The CONSTRAINED-BY 

clause allows the specification of static 
constraints in first-order logic. Next, we show the 
association syntax:  

ASSOCIATION <relationName> 
IS <typeConstructorName> 
[…:class1;…:class2;…:role1;…:role2;…:mult1;…:

mult2;…:visibility1;…:visibility2] 
CONSTRAINED-BY <constraintList> 
END-ASSOCIATION 

Associations are defined in a class by means of 
the ASSOCIATES clause: 

CLASS className… 
ASSOCIATES <<associationName>> 

 

Defining Packages 

The package is the mechanism provided by 
Nereus for grouping related model elements 
together in order to manage complexity and 
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facilitate reuse.  The package has the following 

Nereus syntax: 

PACKAGE packageName 
IMPORTING <importsList> 

GENERALIZATION <inheritsList> 
NESTING <nestingList> 
CLUSTERING <clusteringList> 
<elements> 
END-PACKAGE 

Like MOF, Nereus provides mechanisms for 
metamodel composition and reuse. The 

IMPORTING clause lists the imported packages; 
the GENERALIZATION clause lists the inherited 
packages; NESTING clause lists the nested 
packages and CLUSTERING clause list the 

clustering ones. Classes, associations, and 
packages can be <elements> of a package. 

Examples 

Figure 3 shows the Nereus specification of the 
CLASS Heap. Figure 4 the specification of a 
fragment of the C++ metamodel. It shows three 
complementary specifications of a metamodel 
with which the student will work: an Ecore 
metamodel (Figure 4 a), its OCL restrictions 

(Figure 4 b) and the Nereus specification (Figure 
4 c). 

 

Figure 3. The Class Heap 

 

Figure 4 a. Fragment of the C++ Metamodel 

 

 

Figure 4 b. Fragment of the C++ Ecore 
Metamodel and OCL 

Nereus Semantics 

The semantics of Nereus was constructively given 
by translation to CASL (Bidoit & Mosses, 2004). 

CASL is an algebraic language based on a critical 
selection of known constructs such as subsorts, 
partial functions, first-order logic, and structured 
and architectural specifications. We select CASL 
due to it is at the center of a family of specification  
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Figure 4 c. Fragment of the C++ Metamodel in 
Nereus  

languages. It is supported by tools and facilitates 

interoperability of prototyping and verification 

tools. CASL is linked to ATP through HETS (Hets, 
2018). We define a way to automatically translate 
each Nereus construct into CASL, including 
classes, different kinds of relations and packages. 
The most interesting problems in the translation 
are how to translate higher order functions, 
associations and packages. A detailed description 

may be found at (Favre, 2009). 
 

5. EDUCATIONAL TOOLS 

Our approach provides an appropriate set of tools 
to make formal metamodeling feasible in 
practice. In this section we describe them:  

• A parser for Nereus which includes 
lexical, syntactic and semantic analysis. 
It was developed in ANTLR 4 for Java. 
ANTLR (Another Tool for Language 
Recognition) is a powerful parser 
generator for reading, processing, 
executing, or translating structured text 

or binary files. It is widely used to build 
languages, tools, and frameworks. From 
an additional grammar, ANTLR generates 
a parser that can build and walk parse 
trees (Parr, 2013). With regard to the 

generation of Java code for analyzers, it 

is sufficient to use ANTLR, however we 
decide to integrate it with the 
ANTLRWorks application that makes use 

of ANTLR and provides a comfortable and 
appropriate interface for writing and 
debugging grammars through an intuitive 
and easy graphical interface. 

• A translator of Nereus specifications into 
CASL specifications, developed in Java 
that uses tree walkers generated 

automatically by ANTLR 4. It can be used 
to visit their nodes to execute application-
specific code.  It is worth considering that 
ANTLR 4 allows writing grammars 
specially designed for searching and 

processing syntax trees “on the fly”, 

separating the parsing, search and the 
process of the obtained structures. The 
translator from Nereus to CASL is based 
on the constructive semantics described 
previously in (Favre, 2009). 

• An application that provides the ability to 
write specifications NEREUS, integrating 

the analyzer and translator.   The 
application is an IDE-style where the 
metadesigner is not only able to enter 
Nereus text but see the result of its 
syntactic and semantic analysis. Another 
important output is the CASL text. 

Figure 5 shows two screenshot. The first one 

shows the translation from Nereus to CASL of a 
simple class; the second one is a screenshot of 
the main application screen depicting the main 
panels.  

In the main part of the screen (Figure 5), we can 
see the edition panel of Nereus specifications. It 

has the common characteristics of code editors, 
i.e., syntax highlighting, line numbers and 
highlighting of the current line among others. 
Different kinds of specifications could be selected 
(class, associations or packages). 

Immediately below, the panel of errors can be 
seen. It indicates errors showing their type 

(lexical errors, syntactic, semantic errors, or 

general errors), its location in the text (line 
number and column) and the corresponding 
messages. Additionally, it is possible to position 
the cursor on errors, making double-click on 
them. This panel has also a checkbox "Automatic 
Analysis" which, if marked, enables re-analyze 

the text of each new edition of Nereus showing 
the updated results.  

At the top of the application, there is a menu bar 
and a toolbar with buttons, both with general 
functionality of Nereus files (new file, existing 
open, save). In particular, it included the option 
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for the classpath edition of the Nereus 

specification, which is located in the Options 
menu. Similar to the way in which Java performs 
the search of classes, the analyzer will seek 

Nereus specifications (classes, packages, 
association, and relation schemes) that are 
referenced within the directories in the classpath. 

On the right, there is a panel of multiple functions 
with different tabs. They provide information 
about the test result: general information 
(General), the syntax tree (Syntax Tree), the tree 

of items (Nereus Tree),  detail of the statements 
found during the edition of a class (declarations 
that are  only available for classes and relation 
schemes) and CASL text generated from the 
specification Nereus (CASL). 

 

These tools are integrated with CASL and through 
it with Automatic Theorem Provers (ATP) 
provided by the Heterogeneous Tool SET (HETS) 
(Hets, 2018) (Mossakowski, Maeder & Codescu, 
2014). HETS provides an open source general 
framework for formal method integration and 
proof management. Different logics and their 

analysis and proof tools can be used. ATPs allow 
performing a consistency analysis of the 
metamodel and achieving an analyzed 
specification by using a variety of theorem 
provers such as Isabelle and SPASS. HETS 
support a number of input languages such as 
CASL, OWL, Haskell, and Maude. 

 
 6. USING ALGEBRAIC SPECIFICATIONS  

Formal methods are gradually introduced from 
the teaching of classes, relationships and object-
oriented models in elementary courses of 
Algorithms to the teaching of formal 

metamodeling in advanced courses of Model 
Driven Engineering.  

In a first level, students identify and specify 
algebraically the classes of objects that intervene 
in the problem. This specification describes the 
behavior of the classes in an abstract form, 
independently of particular implementations and 

allows performing early validations and verifying 

properties of the specification. The specifications 
of object classes are constructed from other 
existing ones with which it is related. Basic 
inheritance and client relationships are introduced 
in the specification of basic data structures such 
as stacks, queue, priority queues and collections 

(set, bag, ordered set or sequences).  

Then, students tackle more complex problems 
that need to be modeled in more detail. In this 
stage, students work with semiformal 
specifications of UML class diagrams integrated 
with algebraic specifications in Nereus. 

Association relations, such as aggregation, 

composition, ordinary association, are introduced 
as first-class entities. From this specification, it is 
possible to perform validations that allow 

students to correct the specification that will be 
transformed into code. The level of specifications 
also facilitates to analyze possible 
implementations for both, object classes and 
relations in order to achieve an efficient 
implementation. 

Finally, algebraic formalism is used in a course of 

Model Driven Engineering to specify MOF / Ecore 
metamodels. It is considered valuable to teach 
how to build metamodels taking into account that 
current designers will evolve into metadesigners. 
The objective of the course is to bring the 

students concepts of software modeling under the 

MDE approach, in particular following the 
principles and standards of MDA. To encourage 
students to learn formal specification, we must 
build-up their motivation by demonstrating the 
advantages of formal specifications in improving 
the production and reusability of high quality 
software. Upon completion of the course, the 

students will be able to build metamodels and 
models that conform to these metamodels, build 
model transformations and define MDE 
processes.  

The process of meta-model construction is based 
on the analysis of fragments of models (examples 

of concrete instances) from which a metamodel is 

induced. These fragments focus on some interest 
aspects of the metamodel. In a first step, they are 
represented as an Ecore metamodel. A metaclass 
is created for each object of a different type (if it 
does not exist) and the attributes and operations 
and their restrictions are identified. Then, the 

different relationships between metaclasses are 
identified. The Ecore metamodel is subsequently 
transformed into a Nereus specification. The 
formal specification is analyzed by using the 
analyzer of Nereus and is modified according to 
the results of the translation process with the goal 
of obtaining a syntactically correct specification 

that, through its integration with CASL can be 
formally validated. 

Students can experiment both by defining a 
metamodels for simple DSLs, and analyzing 
fragments of already defined metamodels, such 
as the Java metamodel, detecting inconsistencies 
and proposing solutions. 

Figure 6 summarizes the typical flow with formal 
tools that is applied to analyze the specifications 
of classes, models or metamodels.  First, a 
semiformal specification is transformed into a 
Nereus specification. Next, the formal 
specification is analyzed by using the analyzer of 



2018 Proceedings of the EDSIG Conference   ISSN: 2473-3857 
Norfolk, Virginia USA  v4 n4650 

©2018 ISCAP (Information Systems & Computing Academic Professionals)  Page 9 

http://iscap.info 

Nereus and is modified according to the results of 

the translation process with the goal of obtaining 
a syntactically correct specification. 
Subsequently, the Nereus specification is 

translated to a CASL specification by using a 
Nereus-to-CASL Translator. Nereus could be 
linked through CASL with Automatic Theorem 
Provers (ATP) provided by HETS. ATPs allow 
performing a consistency analysis of the 
metamodel and achieving an analyzed 
specification. The initial specification can be 

improved by reinjecting the changes introduced 
in the latter Nereus specification. 

 

Figure 6. Using formal tools 

 

The reasons for using Nereus as specification 
language are linked to pragmatic and educational 
aspects. Nereus is a formal notation closed to 
core concepts of MOF metamodels that allows 

metadesigners who must manipulate metamodels 
to understand their formal specification.  

Nereus is a metamodeling formal language with 
strong abstraction from details of the classical 
mathematical notation of algebraic languages. In 
comparison to CASL (or other formal languages), 
it may easily use metamodel constructs and 
automate significant issues of the metamodel 

specification (e.g. association specification) 
making the process of developing a formal 
specification simpler and more understandable 

relative to “lower level” formal languages.  The 

mathematics of Nereus specification is easily 
learned and used supporting another way of 
expressing metamodels giving metadesigners a 

better understanding early on them. A 
metadesigner can reflect exactly the MOF 
constructs in Nereus delegating the translation of 
them to a translator that automatize the process. 
Another important issue is that Nereus, like MOF, 
provides the Package construct to structure large 
specifications in order to be legible and 

understandable. Also, it provides the additional 
benefit of supporting subtyping of packages. 
 

7. CONCLUSION 

One of the most challenging aspects of teaching 

formal methods in undergraduate computer 

programs is to find the best approach to present 
the topic.  We believe that it is essential to 
gradually introduce Formal Method to students, 
beginning in the early stages of teaching. It is also 
convenient to show its benefits in terms of 
improving software engineering activities. Thus, 
we propose an integration of formal methods with 

model-driven developments. Our experience 
showed that formal methods can be applied to a 
real problem in advanced courses of MDE, in 
particular, the verification of properties of MOF 
metamodels. 

The guiding thread of this approach is Nereus, a 

formal metamodeling language. Its syntax close 

to semiformal models in UML allows a harmonious 
integration in a curriculum that is based on the 
object-oriented paradigm both in the area of 
programming and in the area of software 
development methodologies. Key concepts such 
as classes, class diagrams (including 

relationships) and metamodels can be specified in 
a common framework supported by the Nereus 
language and through it with CASL, which in turn 
is integrated with demonstrators of theorems 
such as Isabelle and SPASS. 

For several years, algebraic specifications have 
been used to introduce concepts associated with 

abstract data types (domain and operations) as 

we propose for a first undergraduate course. The 
original idea of this approach is to show how 
formal methods can be applied in real MDE 
projects to specify metamodels. This work 
showed only how the teaching of algebraic 
specifications can be integrated at different levels 

of education. There is a variety of formal 
methods. In (Beckert & Hahnle, 2014), 27 
systems used in the verification of programs as a 
selection of the most representative of the state 
of the art, are analyzed. In different stages of 
student training and associated to different 
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subjects, other formal methods could be taught 

based on a variety of different types of models, 
for example, the use of data models based on 
sets, relationships and functions, descriptions of 

interactions between processes through process 
algebra or the description of behavior processes 
in terms of machine models.  
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Appendices and Annexures 

 

 

 

Figure 5. Nereus Analyzer 


