
2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 1

http://iscap.info

Teaching Formal Methods in the Context

of Model Driven Engineering

Liliana Favre

liliana.favre@gmail.com
Universidad Nacional del Centro

de la Provincia de Buenos Aires
CICPBA

Tandil, Argentina

Abstract

The teaching of formal specifications plays a crucial role in the training of software engineering future

professionals. Software failures can be detected in two major phases of the software development
process: specification or modeling and programming. Taking into account that current students will not
generate code in the conventional programming style, the verification and validation activities will also
need to change significantly. In this paper, we propose to introduce formal methods in the context of
Model Driven Engineering. Its underlying principles can be summarized as follows: all artifacts involved
in a process can be viewed as models that conform to a particular metamodel, the process itself can be
viewed as a sequence of model transformations and, all extracted information is represented in a

standard way through metamodels. Model Driven Engineering will impact on software engineering
curriculum, in both the body of knowledge and the structure of its courses. In light of this, metamodeling
will have to be addressed from different visions. We propose to integrate metamodeling with algebraic
specifications. The guiding thread of our approach is the Nereus Language, a Domain Specific Language
for formal metamodeling. We show how to gradually introduce formal methods in the Software
Engineering curriculum. Nereus can be linked to several demonstrators of theorems harnessing the full

power of formal methods. A set of tools that support our approach is described.

Keywords: Software Education, Model Driven Engineering, Metamodeling, Software Engineering,
Formal Methods, Algebraic Specifications, Theorem Provers.

1. INTRODUCTION

The teaching of specifications and formal
methods plays a crucial role in the training of

software engineering professionals. Formal
methods provide systematic and rigorous
techniques to reduce ambiguities and
inconsistencies in software development.
However, formal methods are controversial and,

in general, they are only applied in the
development of critical software. Their detractors
think that software failures are an inevitable evil
and do not encourage the use of formal
techniques to prevent errors. Other authors argue
that making software without failures is

expensive. The challenges to adopting them in

the industry are related to problems of

understandability and scalability. Within the next
few decades, tools based on verification will be as

useful and widespread for software development
as they are today in critical systems (Beckert &
Hahnle, 2014). In many curricula, the
specification and verification courses are not
mandatory and have a marginal presence. The

current situation in the software industry is that
great advances in software technology go hand in
hand with spectacular software failures which
could be resolved by applying formal techniques.

Behind the specifications and formal methods
exists a community that has developed theories,

languages, methods, and tools, but the software

mailto:liliana.favre@gmail.com

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 2

http://iscap.info

industry does not take advantage of them, in

particular, to effectively address the software
crisis (Astesiano, Kreowski, & Krieg-Bruckner,
1999). There is already a substantial body of

research, tools and case studies demonstrating
that it is possible to develop software as reliable
as any other engineering product. To enhance the
software industry, artifact analysis tools that
support novel combinations of code analysis
techniques, model checking, testing and
theorems provers are emerging (Beckert &

Hahnle, 2014). In addition, formal methods can
fill the requirements of new software
development technologies. For instance, moving
to the Cloud requires new ways to protect data
and privacy. As well, the paradigm of IoT requires

analyzing complex software/hardware systems in

the early stages of design, mainly in software
systems that will be embedded in systems
deployed in different places. In both situations,
formal methods can help to solve these problems.

Software failures can be detected in two major
phases of the development process: specification
or modeling, and programming. Taking into

account that current students will not generate
code in the conventional programming style we
should adjust the verification and validation
activities to new approaches (Cowling, 2015). In
the future, Model Driven Engineering (MDE)
becomes more widely applied (Brambilla, Cabot &
Wimmer, 2017). MDE is a software development

methodology that focuses on the use of models
and model transformations to raise the level of
abstraction and automation in software
development, either to generate new software or
to modernize legacy software. Model-driven
principles can be summarized as follows: all

artifacts involved in an MDE process can be
viewed as models that conform to a particular
metamodel, the process itself can be viewed as a
sequence of model transformations and, all
extracted information is represented in a
standard way through metamodels. Model Driven
Development (MDD) refers to forward

engineering processes that use models as
primary development artifacts. A specific

realization of MDD is the Model Driven
Architecture (MDA) proposed by the Object
Management Group (OMG) in the context of
object-oriented modeling (MDA, 2014) (OMG,
2018).

Metamodeling is crucial in Model-Driven
processes and one of the most important changes
in teaching Software Engineering will result in the
need to move the focus from models to
metamodels that describe the structure of a
family of models and the transforming methods

at metamodel level for mapping them into code.

The testing activities need to change from code-

centric concepts to metamodel-based ones. It is
important to reason about metamodels properly
due to having errors in a metamodel leads to

having errors in its model instances.

The main obstacle so that MDE impacts on
software development is the lack of human
resources that, through adequate training, assess
the power of them and transfer their experience
to software development projects. The
construction of metamodels is not well supported

with established practices and methodologies.

One of the most challenging aspects of teaching
formal methods in undergraduate computer
programs is that of finding the best approach to

introducing the subject (Spichkova & Zamansky,
2016). It is essential to gradually introduce

students to formal methods from the early stages
of teaching Software Engineering (Ishikawa,
Yoshioka & Tanabe, 2015). In this paper we
propose to teach concepts of Model Driven
Engineering and, metamodeling by integrating
semiformal specifications with algebraic
specifications. The bases of this approach are

introduced in the early stages of teaching. The
guiding thread of our approach is the Nereus
Language, a Domain Specific Language (DSL) for
formal metamodeling (Favre, 2009) (Favre &
Duarte, 2016). We show how to gradually
introduce formal methods going from the

teaching of classes, relationships and object-

oriented models in elementary courses of
Algorithms to the teaching of formal
metamodeling in advanced courses of Model
Driven Engineering. Nereus can be linked to the
Common Algebraic Specification Language
(CASL) and through it, to several demonstrators

of theorems harnessing the full power of formal
methods. The main contributions of this work
are: the Nereus language, a set of educational
tools and a methodology to introduce formal
specification in Software Engineering curriculum.

The structure of the article is as follows. Section
2 provides definitions and discussion on MDE.

Section 3 introduces metamodeling concepts.

Section 4 describes the syntax of the Nereus
Language. In Section 5 a set of tools to make
formal metamodeling feasible in practice is
presented. Section 6 describes how to introduce
algebraic specifications in undergraduate courses
in a Software Engineering career and presents

motivation remarking our contribution. Finally, in
Section 7 we present conclusions.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 3

http://iscap.info

2. MODEL DRIVEN ENGINEERING

Model Driven Engineering is a software
development methodology that focuses on the
use of models and model transformations to raise

the level of abstraction and automation in
software development, either to generate new
software or to modernize legacy software.
Different acronyms are associated with model-
driven developments: MBE (Model Based
Engineering), MDE (Model Driven Engineering),
MDD (Model Driven Development), MDA (Model-

Driven Architecture), MDSM (Model Driven
Software Modernization) and ADM (Architecture
Driven Modernization). Figure 1 shows the
relation between the different acronyms.

Figure 1. Model-driven Acronyms

MBE is the branch of software engineering in
which software models play an important role,
being the basis of development. However, there
is no direct link between the models and the
generated software precisely defined through
transformations.

MDE can be viewed as a subset of MBE. It is the
branch of software engineering in which
processes are driven by models, i.e. models are

the primary artifacts of different software
processes. MDE has emerged as a new software
engineering discipline which emphasizes the use
of models and model transformations to raise the

abstraction level and the degree of automation in
software development. Productivity and some
aspects of the software quality such as
maintainability or interoperability are goals of
MDE.

MDD refers to forward engineering processes that

use models as primary development artifacts. A

specific realization of MDD is MDA (MDA, 2014).

The outstanding ideas behind MDA are,
separating the specification of the system
functionality from its implementation on specific

platforms, managing the software evolution from
abstract models to implementations. Models play
a major role in MDA, which distinguishes at least
platform-independent and platform-specific
models. An MDA process focuses on the
automatic transformation of different models that
conform to MOF (Meta Object Facility)

metamodel, the standard for defining
metamodels in the context of MDA (MOF, 2016).
It provides the ability to design and integrate
semantically different languages such as general-
purpose languages, DSLs and modeling

languages in a unified way. MOF can be

considered the essence of MDA allowing different
kinds of artifacts from multiple technologies to be
used together in an interoperable way. MOF
provides two metamodels EMOF (Essential MOF)
and CMOF (Complete MOF). EMOF favors the
simplicity of implementation over expressiveness.
The Eclipse Modeling Framework (EMF) was

created for facilitating system modeling,
metamodeling, and code generation (EMF, 2018).
EMF started as an implementation of MOF
resulting Ecore, the EMF metamodel comparable
to EMOF. A variety of tools related to MDE are
provided by EMF.

MDSM is a particular form of reengineering for the

technological and functional evolution of legacy
systems that begins to be identified in the early
21st century (Brambilla et al., 2017). It is based
on model-driven processes of reverse
engineering, restructuring and forward
engineering. In the context of ADM, a set of

modernization specifications is developed. ADM is
defined as “the process of understanding and
evolving existing software assets for the purpose
of software improvement, modifications,
interoperability, refactoring, restructuring, reuse,
porting, migration, translation, integration, and
service-oriented architecture deployment” (ADM,

2018).

3. FORMAL METAMODELING

MDE will impact on software engineering
curriculum, in both the body of knowledge and
the structure of its courses. In light of this,
verification and validation will also change

significantly and formal metamodeling will have
to be addressed from different views.

The essence of MDA is the metamodel MOF
allowing interoperability from multiple
technologies. It is important to formalize and
reason about MOF metamodels and we propose

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 4

http://iscap.info

to exploit the strong background achieved by the

community of formal methods.

The MOF modeling concepts are “classes, which
model MOF meta-objects; associations, which

model binary relations between meta-objects;
Data Types, which model other data; and
Packages, which modularize the models” (MOF,
2006 pp. 2-6). MOF metamodels are specified by
using restricted UML (Unified Modeling Language)
class diagrams and annotations OCL (UML, 2017)
(OCL, 2014). On the one hand, UML has the

advantage of visualizing language constructs. On
the other hand, OCL has a denotational semantics
that has been implemented in tools allowing
dynamic validation of snapshots. A major
obstacle for specifying metamodels is that they

must master two different languages, UML for

capturing the domain structure and OCL for the
definition of well-formedness rules. There are no
guidelines to assist the metamodel construction
through both paradigms. Cadavid, Combemale,
and Baudry (2015) observe that all metamodels
tend to have a small subset of concepts that are
constrained by the OCL rules, most of them are

loosely coupled to the underlying structure.

Our main contribution is the integration of MOF
metalanguage with formal specification
languages. In this context, we consider that a
formal specification technique must at least
provide syntax, some semantics, and an

inference system. The syntax defines the

structure of the text of a formal specification
including properties that are expressed as axioms
(formulas of some logic). The semantics describes
the models linked to a given specification; in the
formal specification context, a model is a
mathematical object that defines the behavior of

the realizations of the specification. The inference
system allows defining deductions that can be
made from a formal specification. These
deductions allow new formulas to be derived and
checked. The inference system can help to
automate testing, prototyping or verification.

Following the previous considerations, we define

Nereus, a formal metamodeling language, and

processes for reasoning about MOF-like
metamodels such as Ecore metamodels.

It is important to remark that the instantiation of
a metamodel produces models, which in turn are
instantiated. So, having errors in a metamodel
leads to having errors in its model instances.

Besides, a model can be well-formed but still be
incorrect. A combination of MOF metamodeling
and formal specification can help metadesigners
to address these issues. Current metamodeling
tools enable code generation and detect invalid
constraints, however, they do not find instances

of the metalanguage (models). Formal methods

offer rigor and precision while reducing ambiguity
and inconsistency. Most MDE semiformal
metamodels do not have support for typing

metamodels and the notion of polymorphism at
the metamodel level is imprecise due to the type
of a metamodel is not defined. These are
limitations for certain applications related to MDE.
For instance, to have enough valid instances
available is a requisite to test model
transformations. Subtyping has consequences

regards to reuse of models and metamodels and
model transformations.

4. THE NEREUS LANGUAGE

Nereus provides modeling concepts that are

supported by MOF and the UML Infrastructure,

including classes, associations and packages and,
mechanisms for structuring them. First, we
describe the Nereus syntax (classes, associations,
and packages) and some examples of Nereus
specifications. Next, we present some aspects of
the semantic of Nereus.

Nereus Syntax

Defining Classes

Classes may declare types, attributes,
operations, and axioms which are formulas of
first-order logic. They are structured by different
kinds of relations: importing, inheritance,

subtyping and associations. Next, we show the
syntax of a class in Nereus:

CLASS className [<parameterList>]
IMPORTS <importsList>
IS-SUBTYPE-OF <subtypeList>
INHERITS <inheritsList>
ASSOCIATES <associatesList>>

BASIC CONSTRUCTOR(S) <constructorList>
DEFERRED
TYPE(S) <sortList>
ATTRIBUTE(S) <attributeList>
OPERATION(S) <operationList>
EFFECTIVE
TYPE(S) <sortList>

ATTRIBUTE(S) <attributeList>
OPERATION(S) <operationList>
AXIOMS <varList>
<axiomList>
END-CLASS

Nereus distinguishes variable parts in a
specification by means of explicit

parameterization. The elements of
<parameterList> are pairs C1:C2 where C1 is the
formal generic parameter constrained by an
existing class C2 (only subclasses of C2 will be
actual parameters). In particular, the binding C1:

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 5

http://iscap.info

ANY expresses a parameterization without

restrictions and can be denoted by C1. The
IMPORTS clause expresses client relations. The
specification of the new class is based on the

imported specifications declared in <importList>
and their public operations may be used in the
new specification.

Nereus distinguishes inheritance from subtyping.
Subtyping is like inheritance of behavior, while
inheritance relies on the module viewpoint of
classes. Inheritance is expressed in the INHERITS

clause; the specification of the class is built from
the union of the specifications of the classes
appearing in the <inheritsList>. Subtypings are
declared in the IS-SUBTYPE-OF clause. A notion
closely related with subtyping is the

polymorphism. Nereus allows us to define local

instances of a class by the following syntax
ClassName [rename <bindingList>] where the
elements of <bindingList> can be pairs of
identifiers nameTo as nameFrom separated by a
comma.

The BASIC CONSTRUCTORS clause lists the
operations that are basic constructors of the

interest type. Nereus distinguishes deferred and
effective parts. The DEFERRED clause declares
new types, attributes or operations that are
incompletely defined. The EFFECTIVE clause
declares types, attributes and operations
completely defined.

The ATTRIBUTES clause introduces, like MOF, an

attribute with properties. OPERATIONS clause
introduces the operation signatures, the list of
their arguments and result types. Operations can
be declared as total or partial. Nereus allows us
to specify operation signatures in an incomplete
way. Nereus supports higher-order operations (a

function f is higher-order if functional sorts
appear in a parameter sort or the result sort of f).
In the context of OCL Collection formalization,
second-order operations are required but
NEREUS support higher-order.

In Nereus it is possible to specify any of the three
levels of visibility for operations (public, protected

and private) and incomplete functionality denoted
by an underscore in the operation signature.

Defining Associations

Nereus provides a component Association, a
taxonomy of constructor types, that classifies
binary associations according to kind
(aggregation, composition, ordinary association),

degree (unary, binary), navigability
(unidirectional, bidirectional) and, connectivity
(one-to-one, one-to-many, many-to-many)
(Figure 2). The component Association provides

Relation Schemes that can be used in the

definition of concrete associations by instantiating
classes,

Figure 2. The Component Association

roles, visibility, and multiplicity. Associations can
be restricted by using static constraints in first-

order logic. New associations can be defined by
the ASSOCIATION construction. The IS clause
expresses the instantiation of
<typeConstructorName> with classes, roles,
visibility, and multiplicity. The CONSTRAINED-BY

clause allows the specification of static
constraints in first-order logic. Next, we show the
association syntax:

ASSOCIATION <relationName>
IS <typeConstructorName>
[…:class1;…:class2;…:role1;…:role2;…:mult1;…:

mult2;…:visibility1;…:visibility2]
CONSTRAINED-BY <constraintList>
END-ASSOCIATION

Associations are defined in a class by means of
the ASSOCIATES clause:

CLASS className…
ASSOCIATES <<associationName>>

Defining Packages

The package is the mechanism provided by
Nereus for grouping related model elements
together in order to manage complexity and

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 6

http://iscap.info

facilitate reuse. The package has the following

Nereus syntax:

PACKAGE packageName
IMPORTING <importsList>

GENERALIZATION <inheritsList>
NESTING <nestingList>
CLUSTERING <clusteringList>
<elements>
END-PACKAGE

Like MOF, Nereus provides mechanisms for
metamodel composition and reuse. The

IMPORTING clause lists the imported packages;
the GENERALIZATION clause lists the inherited
packages; NESTING clause lists the nested
packages and CLUSTERING clause list the

clustering ones. Classes, associations, and
packages can be <elements> of a package.

Examples

Figure 3 shows the Nereus specification of the
CLASS Heap. Figure 4 the specification of a
fragment of the C++ metamodel. It shows three
complementary specifications of a metamodel
with which the student will work: an Ecore
metamodel (Figure 4 a), its OCL restrictions

(Figure 4 b) and the Nereus specification (Figure
4 c).

Figure 3. The Class Heap

Figure 4 a. Fragment of the C++ Metamodel

Figure 4 b. Fragment of the C++ Ecore
Metamodel and OCL

Nereus Semantics

The semantics of Nereus was constructively given
by translation to CASL (Bidoit & Mosses, 2004).

CASL is an algebraic language based on a critical
selection of known constructs such as subsorts,
partial functions, first-order logic, and structured
and architectural specifications. We select CASL
due to it is at the center of a family of specification

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 7

http://iscap.info

Figure 4 c. Fragment of the C++ Metamodel in
Nereus

languages. It is supported by tools and facilitates

interoperability of prototyping and verification

tools. CASL is linked to ATP through HETS (Hets,
2018). We define a way to automatically translate
each Nereus construct into CASL, including
classes, different kinds of relations and packages.
The most interesting problems in the translation
are how to translate higher order functions,
associations and packages. A detailed description

may be found at (Favre, 2009).

5. EDUCATIONAL TOOLS

Our approach provides an appropriate set of tools
to make formal metamodeling feasible in
practice. In this section we describe them:

• A parser for Nereus which includes
lexical, syntactic and semantic analysis.
It was developed in ANTLR 4 for Java.
ANTLR (Another Tool for Language
Recognition) is a powerful parser
generator for reading, processing,
executing, or translating structured text

or binary files. It is widely used to build
languages, tools, and frameworks. From
an additional grammar, ANTLR generates
a parser that can build and walk parse
trees (Parr, 2013). With regard to the

generation of Java code for analyzers, it

is sufficient to use ANTLR, however we
decide to integrate it with the
ANTLRWorks application that makes use

of ANTLR and provides a comfortable and
appropriate interface for writing and
debugging grammars through an intuitive
and easy graphical interface.

• A translator of Nereus specifications into
CASL specifications, developed in Java
that uses tree walkers generated

automatically by ANTLR 4. It can be used
to visit their nodes to execute application-
specific code. It is worth considering that
ANTLR 4 allows writing grammars
specially designed for searching and

processing syntax trees “on the fly”,

separating the parsing, search and the
process of the obtained structures. The
translator from Nereus to CASL is based
on the constructive semantics described
previously in (Favre, 2009).

• An application that provides the ability to
write specifications NEREUS, integrating

the analyzer and translator. The
application is an IDE-style where the
metadesigner is not only able to enter
Nereus text but see the result of its
syntactic and semantic analysis. Another
important output is the CASL text.

Figure 5 shows two screenshot. The first one

shows the translation from Nereus to CASL of a
simple class; the second one is a screenshot of
the main application screen depicting the main
panels.

In the main part of the screen (Figure 5), we can
see the edition panel of Nereus specifications. It

has the common characteristics of code editors,
i.e., syntax highlighting, line numbers and
highlighting of the current line among others.
Different kinds of specifications could be selected
(class, associations or packages).

Immediately below, the panel of errors can be
seen. It indicates errors showing their type

(lexical errors, syntactic, semantic errors, or

general errors), its location in the text (line
number and column) and the corresponding
messages. Additionally, it is possible to position
the cursor on errors, making double-click on
them. This panel has also a checkbox "Automatic
Analysis" which, if marked, enables re-analyze

the text of each new edition of Nereus showing
the updated results.

At the top of the application, there is a menu bar
and a toolbar with buttons, both with general
functionality of Nereus files (new file, existing
open, save). In particular, it included the option

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 8

http://iscap.info

for the classpath edition of the Nereus

specification, which is located in the Options
menu. Similar to the way in which Java performs
the search of classes, the analyzer will seek

Nereus specifications (classes, packages,
association, and relation schemes) that are
referenced within the directories in the classpath.

On the right, there is a panel of multiple functions
with different tabs. They provide information
about the test result: general information
(General), the syntax tree (Syntax Tree), the tree

of items (Nereus Tree), detail of the statements
found during the edition of a class (declarations
that are only available for classes and relation
schemes) and CASL text generated from the
specification Nereus (CASL).

These tools are integrated with CASL and through
it with Automatic Theorem Provers (ATP)
provided by the Heterogeneous Tool SET (HETS)
(Hets, 2018) (Mossakowski, Maeder & Codescu,
2014). HETS provides an open source general
framework for formal method integration and
proof management. Different logics and their

analysis and proof tools can be used. ATPs allow
performing a consistency analysis of the
metamodel and achieving an analyzed
specification by using a variety of theorem
provers such as Isabelle and SPASS. HETS
support a number of input languages such as
CASL, OWL, Haskell, and Maude.

 6. USING ALGEBRAIC SPECIFICATIONS

Formal methods are gradually introduced from
the teaching of classes, relationships and object-
oriented models in elementary courses of
Algorithms to the teaching of formal

metamodeling in advanced courses of Model
Driven Engineering.

In a first level, students identify and specify
algebraically the classes of objects that intervene
in the problem. This specification describes the
behavior of the classes in an abstract form,
independently of particular implementations and

allows performing early validations and verifying

properties of the specification. The specifications
of object classes are constructed from other
existing ones with which it is related. Basic
inheritance and client relationships are introduced
in the specification of basic data structures such
as stacks, queue, priority queues and collections

(set, bag, ordered set or sequences).

Then, students tackle more complex problems
that need to be modeled in more detail. In this
stage, students work with semiformal
specifications of UML class diagrams integrated
with algebraic specifications in Nereus.

Association relations, such as aggregation,

composition, ordinary association, are introduced
as first-class entities. From this specification, it is
possible to perform validations that allow

students to correct the specification that will be
transformed into code. The level of specifications
also facilitates to analyze possible
implementations for both, object classes and
relations in order to achieve an efficient
implementation.

Finally, algebraic formalism is used in a course of

Model Driven Engineering to specify MOF / Ecore
metamodels. It is considered valuable to teach
how to build metamodels taking into account that
current designers will evolve into metadesigners.
The objective of the course is to bring the

students concepts of software modeling under the

MDE approach, in particular following the
principles and standards of MDA. To encourage
students to learn formal specification, we must
build-up their motivation by demonstrating the
advantages of formal specifications in improving
the production and reusability of high quality
software. Upon completion of the course, the

students will be able to build metamodels and
models that conform to these metamodels, build
model transformations and define MDE
processes.

The process of meta-model construction is based
on the analysis of fragments of models (examples

of concrete instances) from which a metamodel is

induced. These fragments focus on some interest
aspects of the metamodel. In a first step, they are
represented as an Ecore metamodel. A metaclass
is created for each object of a different type (if it
does not exist) and the attributes and operations
and their restrictions are identified. Then, the

different relationships between metaclasses are
identified. The Ecore metamodel is subsequently
transformed into a Nereus specification. The
formal specification is analyzed by using the
analyzer of Nereus and is modified according to
the results of the translation process with the goal
of obtaining a syntactically correct specification

that, through its integration with CASL can be
formally validated.

Students can experiment both by defining a
metamodels for simple DSLs, and analyzing
fragments of already defined metamodels, such
as the Java metamodel, detecting inconsistencies
and proposing solutions.

Figure 6 summarizes the typical flow with formal
tools that is applied to analyze the specifications
of classes, models or metamodels. First, a
semiformal specification is transformed into a
Nereus specification. Next, the formal
specification is analyzed by using the analyzer of

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 9

http://iscap.info

Nereus and is modified according to the results of

the translation process with the goal of obtaining
a syntactically correct specification.
Subsequently, the Nereus specification is

translated to a CASL specification by using a
Nereus-to-CASL Translator. Nereus could be
linked through CASL with Automatic Theorem
Provers (ATP) provided by HETS. ATPs allow
performing a consistency analysis of the
metamodel and achieving an analyzed
specification. The initial specification can be

improved by reinjecting the changes introduced
in the latter Nereus specification.

Figure 6. Using formal tools

The reasons for using Nereus as specification
language are linked to pragmatic and educational
aspects. Nereus is a formal notation closed to
core concepts of MOF metamodels that allows

metadesigners who must manipulate metamodels
to understand their formal specification.

Nereus is a metamodeling formal language with
strong abstraction from details of the classical
mathematical notation of algebraic languages. In
comparison to CASL (or other formal languages),
it may easily use metamodel constructs and
automate significant issues of the metamodel

specification (e.g. association specification)
making the process of developing a formal
specification simpler and more understandable

relative to “lower level” formal languages. The

mathematics of Nereus specification is easily
learned and used supporting another way of
expressing metamodels giving metadesigners a

better understanding early on them. A
metadesigner can reflect exactly the MOF
constructs in Nereus delegating the translation of
them to a translator that automatize the process.
Another important issue is that Nereus, like MOF,
provides the Package construct to structure large
specifications in order to be legible and

understandable. Also, it provides the additional
benefit of supporting subtyping of packages.

7. CONCLUSION

One of the most challenging aspects of teaching

formal methods in undergraduate computer

programs is to find the best approach to present
the topic. We believe that it is essential to
gradually introduce Formal Method to students,
beginning in the early stages of teaching. It is also
convenient to show its benefits in terms of
improving software engineering activities. Thus,
we propose an integration of formal methods with

model-driven developments. Our experience
showed that formal methods can be applied to a
real problem in advanced courses of MDE, in
particular, the verification of properties of MOF
metamodels.

The guiding thread of this approach is Nereus, a

formal metamodeling language. Its syntax close

to semiformal models in UML allows a harmonious
integration in a curriculum that is based on the
object-oriented paradigm both in the area of
programming and in the area of software
development methodologies. Key concepts such
as classes, class diagrams (including

relationships) and metamodels can be specified in
a common framework supported by the Nereus
language and through it with CASL, which in turn
is integrated with demonstrators of theorems
such as Isabelle and SPASS.

For several years, algebraic specifications have
been used to introduce concepts associated with

abstract data types (domain and operations) as

we propose for a first undergraduate course. The
original idea of this approach is to show how
formal methods can be applied in real MDE
projects to specify metamodels. This work
showed only how the teaching of algebraic
specifications can be integrated at different levels

of education. There is a variety of formal
methods. In (Beckert & Hahnle, 2014), 27
systems used in the verification of programs as a
selection of the most representative of the state
of the art, are analyzed. In different stages of
student training and associated to different

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 10

http://iscap.info

subjects, other formal methods could be taught

based on a variety of different types of models,
for example, the use of data models based on
sets, relationships and functions, descriptions of

interactions between processes through process
algebra or the description of behavior processes
in terms of machine models.

8. REFERENCES

ADM (2018). Architecture-driven modernization
task force. Retrieved September 5, 2018

from http://www.adm.org.

Astesiano, E., Kreowski, H., & Krieg-Bruckner, B.
(Eds.). (1999). Algebraic Foundations of
System Specification. Heidelberg: Springer-

Verlag.

Beckert, B., & Hahnle, R. (2014). Reasoning and

Verification: State of the Art and Current
Trends. IEEE Intelligent Systems.
January/February 2014, 20-29.

Bidoit, M., & Mosses, P. (2004). CASL User
Manual Introduction to Using the Common
Algebraic Specification Language. Lecture
Notes in Computer Science 2900, Heidelberg:

Springer-Verlag.

Brambilla, M., Cabot, J., & Wimmer, M. (2017).
Model-Driven Software Enginneering in
Practice, Second Edition, Synthesis Lectures
on Software Engineering. Morgan & Claypool

Publishers.

Cadavid, J.J., Combemale, B., & Baudry, B.

(2015). An analysis of metamodeling
practices for MOF and OCL. Computer
Languages, Systems and Structures. 41,
(2015), 42-65.

Cowling, A. J. (2015). The Role of Modelling in
Teaching Formal Methods for Software

Engineering. Proceedings of the First
Workshop on Formal Methods in Software
Engineering Education and Training. Oslo,
Norway. Ceur Worshop Proceedings, Vol
1385.

EMF (2018). Eclipse Modeling Framework,
Retrieved September 5, 2018 from

www.eclipse.org

Favre, L. (2009). A Formal Foundation for
Metamodeling, Ada-Europe 2009: Lecture
Notes in Computer Science 5570, Heidelberg:
Springer-Verlag, 177-191.

 Favre, L., & Duarte, D. (2016). Formal MOF
Metamodeling and Tool Support. Proceedings

of the 4th International Conference on Model-

Driven Engineering and Software
Development. MODELSWARD 2016, 99-110.

Hets (2018). Heterogeneous Tool Set. Retrieved

September, 2018 from
http://www.informatik.unibremen.de/agbkb/
forschung/formal_methods/CoFI/hets/

Ishikawa, F., Yoshioka, N., & Tanabe, Y. (2015)
Keys and Roles of Formal Methods Education
for Industry: 10 Year Experience with Top SE
Program. FMSEE&T@FM 2015, 35-42.

MDA (2014). Object Management Group Model-
driven Architecture (MDA) MDA Guide rev.
2.0. Retrieved September, 2018 from OMG

Document ormsc/2014-06-01

MOF (2016). Meta Object Facility (MOF) Core
Specification, Version 2.5. OMG Document

Number: formal/2016-11-01. Retrieved
September, 2018 from
http://www.omg.org/spec/MOF /2.5.1/

MOF (2006). OMG Meta Object Facility (MOF)
Core Specification, version 1.0. Retrieved
September, 2018 from
http://www.omg.org/spec/MOF

Mossakowski, T., Maeder, C., & Codescu, M.
(2014). Hets User Guide, version 0.99.
Retrieved September, 2018 from
http://www.informatik.unibremen.de/agbkb/

forschung/formal_methods/CoFI/hets/

OCL (2014). Omg Object Constraint Language
(OCL), version 2.4, formal/2014-02-03.

Retrieved September, 2018 from
www.omg.org/ocl/2.4

OMG (2018) Object Management Group
Retrieved, September 2015 from
www.omg.org

Parr, T. (2013). The Definitive ANTLR 4 Reference

(1st ed.), Pragmatic Bookshelf.

Spichkova, M., & Zamansky, A. (2016) Teaching
of Formal Methods for Software Engineering
ENASE 2016 Proceedings of the 11th

International Conference on Evaluation of
Novel Software Approaches to Software
Engineering, SCITEPRESS, 370-377.

UML (2017) Unified Modeling Language version
2.5.1. Retrieved September 2018 from
https://www.omg.org/spec/UML/2.5.1/

http://www.adm.org/
http://www.eclipse.org/
https://dblp.uni-trier.de/pers/hd/y/Yoshioka:Nobukazu
https://dblp.uni-trier.de/pers/hd/t/Tanabe:Yoshinori
https://dblp.uni-trier.de/db/conf/fm/fmseet2015.html#IshikawaYT15
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
http://www.informatik.unibremen.de/agbkb/forschung/formal_methods/CoFI/hets/
http://www.informatik.unibremen.de/agbkb/forschung/formal_methods/CoFI/hets/
http://www.omg.org/ocl/2.4
https://www.omg.org/spec/UML/2.5.1/

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4650

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 11

http://iscap.info

Appendices and Annexures

Figure 5. Nereus Analyzer

