
2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 1
http://iscap.info; http://proc.iscap.info

Implementing Agile as

an Instructional Methodology for Low-Code
Software Development Courses

Laura F. Poe
lpoe@richmond.edu

Lionel Mew

lmew@richmond.edu

University of Richmond

Richmond VA

Abstract

The objective of traditional software development courses focuses on competencies of the programming
languages and technical tools. Project methodologies and software development are typically taught as

separate courses in Information Systems undergraduate programs and are not incorporated until the
final Capstone course. Rather than teaching project methodologies as secondary to the learning phase
of software development, these methodologies can be actively incorporated into the software
development course, applying the theoretical concepts in the classroom. This research measures the

outcome of instituting the project methodology, Agile, as an instructional tool for a low-code software
development course using the Mendix platform.

Keywords: Software development; Agile; pedagogy; rapid delivery; instructional methodology

1. INTRODUCTION

This paper reports on development of a new

program combining Agile methodologies with a
low-code platform to provide a synergistic
experience for non-traditional students in a six
week summer course. Using a low-code platform
as a tool to support the course is possible due to
the emergence of Model Driven Development
(MDD) tools such as Mendix in a new wave of

Computer Aided Software Engineering (CASE)
tools with expanded capabilities. With the
continued adoption of Agile methodologies
throughout industry, the combined experience is
designed to add value to student portfolios as
they prepare to enter the workforce.

CASE tools are software tools used to help design
and generate applications. This occurs at a higher
level of abstraction than application development

using traditional linear programming methods
(Halpern & Tarr, 2006). From the advent of CASE
tools in about 1970, the ability of these tools to

easily and reliably generate applications did not
emerge until decades later.

The CASE tools of the 1980’s allowed less
technical practitioners to generate database
applications by facilitating higher levels of
abstraction – automating and simplifying

application development using the context of
domain models, with the tool generating
development documentation, code, and in some
cases, fully functional applications.

While many professionals used CASE tools as aids
to the development process, few of them used the

tools for complete database application
generation. Several reasons impacted the
decision. The cost and complexity of installing

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 2
http://iscap.info; http://proc.iscap.info

and maintaining the tools, training and paying the

higher salaries of their users, coupled with the
tool’s abilities and failure to perform as predicted,
led to the tools having little commercial impact

during the 1980’s and 1990’s (Schmidt, 2006).
Jones (2002) notes that as many as 70 percent of
CASE tools were not being used.

Reasons for the first-generation CASE tools’ lack
of acceptance include unrealistic performance
expectations and inadequate training. The

emergence of better tools for MDD, evolving from
first generation CASE tools, have improved
performance such that they are now being used
for medium to large scale development projects.
Efforts are being made to address the training
issues. Students entering the workforce must

have some exposure to these new and innovative
tools. Incorporating the Mendix platform into this
Agile course is an effort to provide students with
exposure to a development project using an MDD
tool, in addition to fostering the students’
understanding of working in teams using an Agile
methodology.

The selection of Agile was based on the rise in
practitioner usage of the Agile methodology
across the enterprise. Understanding software
development as well as project management
methodologies are core skills for Information
Systems programs. Traditional ‘Systems Analysis

and Design’ courses focus on the Systems
Development Life Cycle, which primarily uses a

Waterfall methodology approach. Waterfall
methodologies, unlike Agile, follow a systematic
advancement from requirements, design,
development, testing, and implementation over a

long period of time and cover large
functional/programmatic changes. Agile’s focus
on smaller, incremental changes in functionality
and programs allows teams to work in cycles of
two to three weeks. These short cycles can be
easily incorporated into a classroom setting and
allow for software development projects to be

successfully finished in the duration of a
semester. Students are then able to learn both
the software development tools and concepts
along with the project methodology.

2. STUDENT POPULATION

The student population at the School of
Professional and Continuing Studies (SPCS)
consists of mostly non-traditional students.
Although no commonly accepted definition for a
non-traditional student exists, some insight may
be gained by examining SPCS student

demographics. The average student age is 37,
although the information systems students are

closer to 30 as a group. Previously, the majority

of students have been male, although the number
of females in the program is slowly increasing,
with females accounting for more than half of

enrollments in the past semester. Experience
levels and goals of female students are similar to
those of the male students, in which a wide
variance applies equally. Some who are career
switchers have little or no knowledge or
experience, while others have been working in
the field for years.

Eighty-one percent of students are part-time.
Both part-time and full-time students are working
on either Bachelor of Science in Professional
Studies degrees with a major in Information
Technology Management or Information Security,

or a Post-Bachelor Certificate in Applied Studies,
Information Systems, or Information Security. As
previously mentioned, student experience varies,
with some having Associate’s degrees or at least
some community college work, and have
immediately transferred to SPCS with a desire to
complete their Bachelor’s degree. Others have

been in the workforce for some time and need a
degree for promotion, yet others are trying to
break into the information systems field with
significant life experience and success in other
fields. The program can be seen as a degree-
completion program, since most new students
have 45 – 60 credit hours in transfer.

The factors which make SPCS students unique

lead to a wide variety in student understanding,
experience and ability. All major core courses are
classroom-based courses, although some are
offered in hybrid format. No completely online

information systems courses are offered, but
some non-major courses may be taken online.
Most of the students live in the local area, and the
majority of students stay in the area after
graduation. Courses are generally capped at 15
students with overrides up to 20 students,
allowing significant individual attention and

interaction with instructors. The Agile Low-Code
course is an elective 3-credit course in hybrid
format offered during a 6-week summer session.
This particular iteration started with 14 students,

of which two withdrew early in the session.

The diverse student population presents

numerous opportunities as well as challenges.
Much of the student body brings life and work
experiences to the classroom while facing the
challenges of family and work obligations. The
applied aspects of the course arguably add more
value to this student population, whereas the

traditional students continue to mature and learn
to think critically during their degree programs.

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 3
http://iscap.info; http://proc.iscap.info

Continuing students in this program are expected

to focus more on professional competencies, with
the primary focus for instructors to help students
grow professionally.

To facilitate learning amongst this target
population, the high-level philosophy is to provide
an applied aspect for each course. This student
population likes hands-on work. This special topic
course in Agile Low-Code development is an
exciting endeavor, since the expectation is that

the higher level of abstraction allows more
students to develop competencies in the course
material. Students taking this course vary in level
of experience with some students having previous
background in systems development courses and
other students with no software development

background.

3. MODEL DRIVEN DEVELOPMENT

Background
Model Driven Development (MDD) is a software
development methodology that uses model

architectures instead of coding to raise the level
of abstraction such that less technical expertise is
required to develop applications, with business
knowledge being the key ingredient for users.

According to Henkel and Stirna, modeling support
consists of language(s) for modeling constructs in

the specific domain, supported by key underlying
areas of abstraction, understandability,

executability and model refinement. Regarding
development support, or support for development
processes, Henkel and Stirna found the literature
suggests six areas: observability, turn-around-

time, collaborative development support,
integration, developer competence support and
reusability.

When evaluating Mendix against these criteria,
Henkel and Stirna found Mendix to be suited for
web-based development of small to medium

complexity and for small projects with short
delivery times. These qualities were determined
to make Mendix a good fit for supporting this and
other traditional information systems courses.

The FFIEC IT Examination Handbook Infobase
(n.d.) proposes four areas of risk when

considering implementation of CASE tools,
including inadequate standardization, unrealistic
expectations, inability to implement quickly, and
weak repository controls. Mendix was chosen
based on its ability to manage these risks.

Mendix

The Mendix tool was used for the course due to

its functionality, simplicity, and the support
offered by Mendix. The platform is the leading
low-code solution recognized by analyst reports,

such as Gartner, and large enterprise companies,
SAP and IBM. The full-stack platform is designed
to build applications rapidly. The platform
abstracts and automates the various application
development layers from front end to back end.
For example, the data structure is built using the
Unified Modeling Language (UML). The business

logic uses Business Process Modeling Notation
(BPMN), and the user interface is built with
widgets following a ‘what you see is what you get’
(WYSIWYG) model.

The platform allows for business and IT to

collaborate and build applications that add
business value and provides 6 main functions:

 Collaboration
 Data Structure and Domain Model
 Business Logic
 User Interface and Experience

 Security and user authentication
 Deployment

Collaboration
Collaboration is key to building successful
applications that solve business problems. The
business understands the critical business

problems and needs digital solutions to fix those
problems; whereas, the IT department needs to

support the business by providing the solutions
that work. Communication across these two
departments has always been challenging. In
order for both business and IT to collaborate,

speaking the same language, delivering on time,
and delivering under budget are key success
factors. In addition, solutions delivered months
and years after the original business problem has
been identified are unreasonable and reduce the
realization of the solutions’ return on investment.

To deliver applications rapidly, in weeks versus
months, a process change is needed. Agile
methodology follows the iterative process and
business can have a minimal viable product within

weeks with the ability to iterate as needed
(Frydenberg, Yates & Kukesh, 2017). The Agile
methodology allows for iterative development

and for the business to provide input and shape
the product before it is delivered.

When students create a Mendix project, the
collaboration workspace is automatically created
with all the built-in Agile process features. For

example, students can capture their user
requirements and add user stories and sprints.

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 4
http://iscap.info; http://proc.iscap.info

They can create sprints that run for a fixed set of

time and manage the backlog of stories and work
to be done. In addition, using the feedback
widget, they can gather feedback from the

business or professor and implement additional
features and functionalities. The application they
build in the first sprint will be vastly different than
the application they deliver at the end of the
semester. Students can see the process and
workflow as they build the solutions out. The
project manages the code repository and code

check in and out process which allows for multiple
students to work on a diverse set of user stories.

4. SCOPE AND RESEARCH OBJECTIVES

The objective of this study is to examine the use

of Agile as the course delivery model for software
development courses and determine the
effectiveness of Agile as a teaching methodology.
Previous research has indicated successful usage
of Waterfall and Agile methodologies when
teaching Capstone, project-based courses. The
objective of software development courses

focuses on mastery of the programming
languages and technical tools; methodology is
secondary to the learning phase of the software
development. Previous research indicates that
self-regulated learning increases student
motivation through engaging classroom
environments (Linden 2018). Agile as a pedagogy

promotes self-regulated learning and self-
managing teams. Studies of Agile have concluded

that overall performance is linked to the
effectiveness of team coordination in software
development teams (Moe 2009).

The results of the study provide educators with
an alternative course delivery method that
prepares students to create software
development solutions that could be usable
artifacts in the industry and familiarizes them
with the practical applications of the Agile project
methodology. Industries hiring graduates of

information systems and computer science
programs expect intrinsic knowledge of project
management methodologies, extending beyond
software development knowledge. Utilizing Agile

as a pedagogy is a response to the current
demand for skilled workers with a sound
understanding of the project methodology that is

rapidly overtaking the Waterfall and formerly
used methodologies.

Pedagogical principles that were followed during
this course included 1) integrated learning
environment and 2) cooperative learning. The

integration learning principles focuses on
incorporating the technology with the Agile

methodology. Students are able to learn both the

content of the software development tool and
functionality and the subject area of Agile.
Cooperative learning allows students to work

collectively, as a group, to learn from each other
through hands-on practices. As identified by
Niess and Gillow-Wiles, educators shift toward
building a pedagogical reasoning that integrates
technologies as teaching and learning tools
(2017). The communication achieved through
the Agile ceremonies provides the assimilation of

systems learning in a pseudo-practitioner
environment.

The following research questions are explored:

1. Is the Agile Methodology an effective

method for teaching software
development courses?

2. What is the impact on team dynamics and
performance using Agile as a
technological pedagogical approach?

3. Do students perceive their level of
software development learning was

increased, decreased, or unchanged by
using Agile as a pedagogical form of
course delivery?

Research Method
An exploratory, six-week custom developed
course in information systems was created, titled

Agile Low-Code Development, with a minimum
enrollment of twelve and maximum enrollment of

fifteen. The course enabled participants to
develop applications using the Mendix Low Code
Platform and the Agile project methodology. The
use of Agile facilitated students’ learning of the

widely used software development methodology
where requirements and solutions evolve through
structured team collaboration. The Mendix Low
Code Platform does not require coding
experience, giving both technical and non-
technical students the skills to build web and
mobile applications. Using the Mendix tool

provided additional advantages with its built-in
Agile processes. The results of the final products
built by the teams and the qualitative feedback
gathered from students at the end of the course

were used to determine the effectiveness of Agile
as an instructional methodology for software
development.

The Agile tool selected for creating stories and
tracking progress was GitHub, a free online tool
used by numerous government entities and
private industry organizations. GitHub was
applied to support Agile through story tracking,

assignment, and team monitoring activities.
Project teams used GitHub’s storyboard, ZenHub,

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 5
http://iscap.info; http://proc.iscap.info

to display and update the project board.

Activities, such as moving stories from ‘ready’
status to ‘in progress’, ‘testing’, ‘done’, and
‘closed’ were performed on a daily basis during

team scrum ceremonies. These scrum
ceremonies were daily meetings, synonymously
referred to as stand-ups, where each team
member provided the following information: what
was accomplished previously, what will be
accomplished by the next meeting, and any
impediments preventing the completion of the

work.

To promote team independence, a hybrid model
was instituted, having one in-person class per
week and allowing for any remaining meetings to
be held by the teams at their convenience. The

course achieved three primary goals: 1) teach
basic concepts of Agile from a holistic view; 2)
develop the knowledge and ability to use the
Mendix Low-Code Platform; and 3) develop an
application using Agile and Mendix in a group
project. In order to achieve the three goals, the
delivery model of the course operated as an Agile

project using iterative development based upon
weekly sprints.

The course was guided by two professors, one of
whom focused on Mendix development while the
other focused on ensuring the Agile fundamentals
were taught and ceremonies were followed.

Students worked in teams to develop a custom
application based on predetermined parameters.

Students were able to select a project of their
choosing within the course parameters.

Rather than allowing self-forming teams,

professors randomly assigned four teams of three
as well as the student roles on the team. While
the role of the professors was instructional,
professors, also, acted as customers of each of
the Agile teams. The three-person teams
included one member with had a combined role
of scrum master and product owner and two

developer/tester roles.

The first week of the course was instructional and
allowed for team norming with the remaining five

weeks divided into weekly sprints. During the
initial week, fundamental concepts and
instruction on both Agile and Mendix were

delivered by the professors in addition to an
introduction to the GitHub and Mendix tools.
Students were seated with their teams, and time
was allotted for teams to develop their team
norms. The development of team norms is an
essential component of Agile and stipulates a

team’s expectations of team members as well as
meeting cadences.

At the end of the first week, students were
expected to take the Mendix developer
certification to indicate competence in the tool,

essential for developing their applications. Weeks
two through five repeated a cycle of sprint review,
retrospective, Mendix training and tutorials, and
sprint planning. This order was repeated on the
first weekday meeting of the course. Each of the
Agile ceremonies, i.e. sprint review,
retrospective, and sprint planning, were held

during class and facilitated by a professor acting
as a Release Train Engineer (RTE), a role held by
a leader in charge of multiple Agile teams. Each
Agile team used the time given by the professor
to complete the ceremonies. Teams were
expected to have the output for sprint review and

sprint planning ceremonies visible in the GitHub
tool. Teams were, also, expected to have regular
scrums throughout the week to track progress
against assigned stories.

Weekly deliverables were set forth by the
professors and became an essential component of

teams’ stories. Grading rubrics for each
deliverable were provided in advance, and teams
received a collective grade for the majority of the
coursework, Appendix Table 1. Grades were
measured not only on the application functionality
but on team ability to create stories with
measurable and testable acceptance criteria,

estimated story points, owners assigned, and
proper story tracking throughout the sprint.

Detailed feedback was provided weekly, and
students could use this feedback to make
corrections in future weeks. Product owners were
responsible for ensuring that stories were

complete based on the acceptance criteria and
moved each story to the status of closed during
sprint review. If a story was not complete, the
team included the story as part of upcoming
sprint planning, outlining the missing or
nonfunctioning components of their application
that must be corrected during the subsequent

sprint. The final week, sprint 5, of the course was
focused on application security and correcting any
errors found during testing or the product owner’s
review. As a final deliverable, each team

provided a demo of their applicable to the class.

5. RESULTS

All teams satisfactorily produced a software
development project that met the previously
provided criteria of the project rubric. The
software developments projects all had a similar
level of complexity and functionality based on the

requirements provided by the professors.

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 6
http://iscap.info; http://proc.iscap.info

The level of Agile maturity increased each week

as teams became accustomed to the weekly Agile
ceremonies. Teams progressed in the
development of the application at a more regular

pace than in a traditional course delivery
approach due to the required weekly team
collaboration. Using Agile forced teams to plan in
advance with weekly deliverables and have
consistent communication. Procrastination was
significantly minimized due to the visibility of the
application’s progress and story tracking, Figures

1 and 2. As shown in Figure 2, teams were able
to view their progress from sprint to sprint based
on team velocity, which captures the quantity of
work completed each sprint. Work quantity is
measured using story points, an exercise that
provides a numeric value to estimate the difficulty

and time required to complete the task.

Figure 1
Closed stories in GitHub

Student Feedback

The team’s product demos were the final
deliverable and revealed the overall success of
the students and the pedagogy. Of the four
teams, two met the criteria expected in the
application, and the other two lacked some of the
required components.

As part of the course evaluation, the professors
facilitated a retrospective of the course with the

students, gathering in depth feedback. All
students participated in the retrospective during
the last session of the course. The retrospective
followed the format of three basic questions:

 What did we do well?
 What should we continue doing?
 What should we change?

Figure 2
Team velocity

The student response was positive overall, and a
detailed list of feedback can be found in Appendix
Table 2. In terms of the level of difficulty, eight
of the twelve students found the course to be

moderately difficult, with the remaining four
indicating a high level of difficulty. Feedback,
also, indicated that the level of difficulty was
reduced using the Agile methodology for course
delivery. Breaking the course material into
sprints and forcing the students to have weekly
sprint planning during the classroom setting was

one of the advantages identified by participants.

Challenges faced by the students on Mendix
technical issues and questions caused the
majority of uneasiness. The six-week duration of
the course was insufficient for some students to
develop the level of competence desired for app

development, and feedback suggested that
learning both Agile and Mendix competencies in
six weeks proved to be difficult. Suggestions
were to have the course offered in the normal 16-
week semester format. While the issues with
Mendix as an application were evident, these

issues were separate from Agile as a pedagogy.

Research Question 1: Is the Agile Methodology
an effective method for teaching software

development courses? The results of the study
indicated that use of Agile was positive and could
be applied to all software development courses.

However, course length is recommended to be in
excess of six weeks to achieve maximum results.
Students who normally lacked organizational
skills or faced challenges prioritizing tasks
benefited most from Agile pedagogy. Teams
were forced to collaborate through regular
planning sessions, and their output reflected

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 7
http://iscap.info; http://proc.iscap.info

structured preparation, driving additional task

prioritization. The Agile pedagogical approach
simulated a practitioner’s perspective of software
development where development teams have

customer demands and critical timelines.

Continuous learning is a key principle of Agile and
forces students to self-reflect on their sprint work,
changes that need to be made, and how to
incorporate required changes into the new
functionalities for the next sprint. These are real

world challenges being faced in the classroom in
a controlled environment where students can feel
safe to make mistakes, correct, and progress.
Continuous learning requires ownership of their
learning, progress as a team and as an individual,
and the observed student learning was achieved

rapidly.

Research Question 2: What is the impact on team
dynamics and performance using Agile as a
pedagogy? Project-based teams shared the same
end goal to develop an application, though the
specific requirements for each application

differed. The small sizes of the teams created
closer team relationships and required team
members to work together to solve challenges.
Having teams of three limited the possibility of
passive team members. Each individual was vital
to the success of the project. The team could not
succeed without everyone’s contributions.

Therefore, the overall learning of the software
development tool was elevated for all

participants.

DevOps represents the Agile association between
development and IT operations and constitutes a

variety of coding and testing practices designed
to speed up product delivery. Two DevOps
practices were observed during the class, pair
programming and extreme programming. Pair
programming is coding performed by two people
on the same machine, while extreme
programming makes continuous programmatical

adjustments based on changing requirements.
Teams using these methods are more productive
and produce fewer defects (Rico et al. 2009).
Without formally introducing pair programming or

extreme programming concepts into the
classroom, the students were actively performing
both practices throughout the six weeks. Teams

often had one laptop and three team members all
reviewing the app development and making
changes together. Some teams used the product
owner to make recommendations while the other
two team members made the functionality
modifications. The reduced team size enabled

rapid delivery of the application and showcased

Agile and DevOps procedures being applied, often

without instructor involvement.

Research Question 3: Do students perceive their

level of software development learning was
increased, decreased, or unchanged by using
Agile as a pedagogical form of course delivery?
Based on student feedback gathered during the
retrospective and the end of course evaluations,
students felt the level of learning was increased
by using Agile despite the suggestions to lengthen

the course. Course assignments used the sprint
framework, and participants understood the
weekly expectations. In addition, the teams were
motivated to perform and took pride in the
application they were building.

7. CONCLUSION

The overall results of the study support the
utilization of Agile as an instructional
methodology for low-code software development
courses. The professors and students found that
the results of the app development either met or

exceeded expectations, and attributed the
application of Agile across teams increased their
ability to complete the project. Students were
able to gain hands-on experience in Mendix while
mimicking a real-world Agile project. The Agile
pedagogical approach could be transferable to
traditional undergraduate student populations

and is suggested for low-code platforms in order
to maximize the ability for the students to

complete the project.

8. FUTURE RESEARCH

Recommendations for future study include
expanding the use of Agile pedagogy to other
software development courses for obtaining a
larger sample size to measure impact and
progress. Follow-up studies should review the
impact to students after beginning employment in
information systems related fields to determine

the success of the Agile pedagogy relative to its
application in industry. Evaluation of specific
Agile tools was not performed as part of this study
and could be further considered to enhance the

instructional value.

7. REFERENCES

FFIEC (n.d.). Computer-Aided Software

Engineering. FFIEC IT Examination Handbook
Infobase. Retrieved from https://ithandbook.
ffiec.gov/it-booklets/development-and-
acquisition/development-procedures/

software-development-techniques/
computer-aided-software-engineering.aspx

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 8
http://iscap.info; http://proc.iscap.info

Frydenberg, M., Yates, D., & Kukesh, J. (2018).

Sprint, then Fly: Teaching Agile
Methodologies with Paper Airplanes.
Information Systems Education Journal,

16(5), 22.

Hailpern, B., & Tarr, P. (2006). Model-driven

development: The good, the bad, and the
ugly. IBM systems journal, 45(3), 451-461.

Jones, W. (2002). Case tool time. Retrieved from

 http://www.umsl.edu/~sauterv/analysis/
 488_f02_papers/CASE.html

Henkel, M., & Stirna, J. (2010, September).

Pondering on the key functionality of model
driven development tools: the case of

mendix. In International Conference on
Business Informatics Research (pp. 146-
160). Springer, Berlin, Heidelberg.

Linden, T. (2018). Scrum-based learning

environment: Fostering self-regulated
learning. Journal of Information Systems

Education, 29(2), 65-74.

Moe, N. B., Dingsoyr, T., & Dyba, T. (2009,

November 20). A teamwork model for
understanding an agile team: A case study of
a Scrum project. Information and Software
Technology, 52, 480-491.

Niess, M. L., & Gillow-Wiles, H. (2017). Expanding

teachers’ technological pedagogical reasoning
with a systems pedagogical approach.
Australasian Journal of Educational

Technology, 33(3), 77–95.

Rico, D. F., & Sayani, H. H. (2009). The Business

Value of Agile Softare Methods: Maximizing
ROI with Just-in-Time Process and
Documentation. Fort Lauderdale: J. Ross
Publishing.

Schmidt, D. C. (2006). Model-driven engineering.

Computer-IEEE Computer Society, 39(2), 25.

Selic, B. (2003). The pragmatics of model-driven

development. IEEE software, 20(5), 19-25.

Teichroew, D., & Hershey, E. A. (1977). PSL/PSA:

A computer-aided technique for structured
documentation and analysis of information
processing systems. IEEE transactions on
software engineering, (1), 41-48.

Tuckman, B. W. (1965). Developmental sequence
in small groups. Psychological bulletin, 63(6),
384.

Yourdon, Ed (Jul 23, 2001). Can XP Projects
Grow? Computerworld, 35(30), 28.

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 9
http://iscap.info; http://proc.iscap.info

Appendix

Project - this is the semester project. It will be graded on functionality,
structure, adherence to requirements, etc. according to the rubric
provided.

20%

Sprint Deliverables –
User Stories, Domain Model, Business Logic, User Interface, Security and

Application Deployment. Each deliverable increasingly incorporates Agile
and Mendix concepts, and will be graded on these competencies separately
according to rubrics provided.

60%
(10% each - 5%

Agile, 5%
Mendix)

Mendix Certification – Students are required to become Mendix Rapid
Developer certified and provide documentation of certification.

10%

Presentation – Students will demonstrate and present their projects. 10%

Total 100%

Table 1

Grading Distribution

http://iscap.info/

2019 Proceedings of the EDSIG Conference ISSN: 2473-4901

Cleveland Ohio v5 n4951

2019 ISCAP (Information Systems and Academic Professionals) Page 10
http://iscap.info; http://proc.iscap.info

Table 2
Retrospective results of Agile low-code development course

What did we do well? What should we keep doing? What should we change?

Teams had consistent communication

and collaboration among team

members.

Direct feedback was given during

class.

Include a working version of a

Mendix app for student

reference.

Time was provided during class to work

on the project. Teams had the ability to

plan and resolve technical issues during

class with the professors.

Six weeks was not sufficient for

fully learning Mendix.

Reference exact pages in books

and other materials during class.

GitHub's ZenHub project board allowed

teams to assign stories to team

members, giving everyone a

responsibility and ownership.

ZenHub boards in GitHub provided

more organization for story

tracking and should continue to

be used for the Agile process

rather than the Mendix platform's

story tracking.

Requiring the Mendix Developer

Certification as the first Mendix

deliverable during week 1 was

difficult to complete.

Ability to prioritize work using Agile and

stories for clear definition of work.

Teams assigned by professors

prior to the start of the class.

Have one professor rather than

two in future offerings.

Agile provided a clear framework for

teams to understand weekly

expectations.

Team roles assigned by

professors prior to the start of

the class. Some students were

forced to develop team

managerial responsibilities who

would otherwise not have chosen

this role.

Agile assisted the team in the ability to

complete the project by providing

motivation and the division of duties

among the team members.

The order of the weekly class

facilitated progress: sprint review,

retrospective, Mendix tutorial,

sprint planning.

The Mendix support team was available

for technical issues and questions.

The course as an Agile project

was hands-on and increased

learning of the tools and

processes.

Tutorials provided by Mendix

skip some steps making it

difficult to find information when

facing technical issues.

Weekly Mendix tutorials assisted

students with progressing in their

application development.

Provide a clearer definition of the

application's requirements (e.g.

what is considered a microflow).

Agile Pedagogy &

Tools

Mendix Tool

Communication &

Collaboration

Course Retrospective

http://iscap.info/

