
2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://proc.iscap.info; https://www.iscap.info

Plugin-based Tool for Teaching

Secure Mobile Application Development

A B M Kamrul Riad

aislamri@students.kennesaw.edu

Md Saiful Islam

Mislam16@students.kennesaw.edu

Hossain Shahriar
hshahria@kennesaw.edu

Chi Zhang

czhang4@kennesaw.edu

Maria Valero
mvalero2@kennesaw.edu

Sweta Sneha

ssneha@kennesaw.edu

Kennesaw State University

Kennesaw, GA

Sheikh Ahamed
Sheikh.ahamed@marquette.edu

Milwaukee, WI

Abstract

Mobile device security has become increasingly important in mobile computing. Since the mobile devices
and applications are growing rapidly, the security threats are intensified due to mobile app flaws and
lack of security consideration in early stages of software development. The unsecure software

development process creates a serious weak path that causes potential malicious attacks in mobile
devices. To mitigate the mobile threats, it is essential for application developers to follow secure code
development processes to alleviate data leakage or access control vulnerabilities. Secure Mobile
Software Development needs to be emphasized and adopted for reducing security vulnerabilities. In this

paper we present a development tool of secure code analysis for mobile application development. The
tool is designed to find the security leakage of static code and implementation of plugins such as Droid
Patrol. The proposed code analysis and design procedure in the early stage of application development
can eliminate the weak security path in coding. Our experience of running the plugin in classrooms are
discussed and student feedback are provided.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://proc.iscap.info; https://www.iscap.info

Keywords: Android, Secure software Development, SQL injection, IoT, Static analysis, data flow, secure

coding.

1. INTRODUCTION

As mobile devices become ubiquitous,
numerous major cyber-attacks, stolen sensitive
information, unauthorized credit card
transactions and security concerns have been
reported (Meng et al., 2018). Android application

is in the most vulnerable position in malware
collection, where two or more malicious apps
associate together for target attacking. With the
conventional attack detection, each individual app
may use the flexible inter-app communication
infrastructural support, so called Inter-

Component Communication (ICC). However,
potential leak may not be able to be tracked by
ICC detection. (Elish et al, 2018; Tian et al.,
2018). Android devices has a big share of the
global smart devices market. There are about 2.2
million apps in Google Play Store and around 1.5
million apps are free. These free applications may

have a dark side because the application codes
may not be built with consideration of security
that may lead to the potential malicious data
flows (Tian et al., 2018).

Therefore severe data breach are found
in mobile devices including health monitors and
trackers when these health devices communicate
with the databases. The data security and privacy

are serious concerns. The vulnerabilities are due
to poor security code, firmware system in the
software, and malicious code injected while

devices are connected to the apps (Zhang et al.,
2020). In 2017, a popular virtual keyboard app
leaks 31 million user’s personal data because its
database was not protected with a password, and
Android users around the world were affected
(Whitaker, 2020). Also, the analysis of the recent
cyber-attacks in financial and healthcare

organizations indicates that secure software
development is important to protect the
widespread cyber-attacks.

There are not many security

measurements and tools that application

developers use to ensure the essential data
protection. Various apps for keeping Coronavirus
test and diagnoses have been available to be
downloaded since COVID-19 pandemic started.
EFF (Electronic Frontier Foundation) warns
COVID-19 tracing apps pose security and privacy

risks. Despite that Google and Apple have
transparent security and privacy policies,
industries stakeholders along with security
scientists warn the potential security threats that

developer must take higher technical measures
and tools while developing software applications.
Currently smart devices are unable to verify any
Proximity Tracking System (PTS) that checks a
public database of keys against Rolling Proximity
Identifiers (RPIDs) on a user device (Davis,
2020).

Most mobile security vulnerability should
be addressed and fixed in the software
development phase. In general, the security
threat and vulnerability can be reduced during the

application development phase. But such an

effort to develop secure code requires ground
support and tools from both educational
institutions and training communities (Shahriar et
al., 2019). Four most prominent Integrated
Development Environments (IDE): Eclipse,
IntelliJ IDEA, Visual Studio and Netbeans, help

developers check for security flaws and determine
input-validation-related vulnerabilities in code.
Android Studio provides FindSecurityBugs plugin
which analyzes the static byte code to look for
bugs in java code from within IntelliJ IDEA and
Findbugs, a security detect detection tool for java

code, is used for static analysis to look for more
than 200 bugs patterns such as recursive loops,
null pointer differences, bad uses of java libraries
and deadlocks. Android Studio plugin specializes

in finding the static code bugs and inconsistency
of code structure to ensure the code quality from
the application development stage (Baset &

Denning, 2017; Pfeiler, 2020).

However, there is not a code analysis tool
that can automatically identify all the security
flaws in the source code for developers to analyze

vulnerabilities and security bugs in the initial
phase of the mobile software development. In
this paper, we design and implement the
DroidPatrol which is an integrated plugin with the
Android Studio to perform tainted data flow-
based static analysis. DroidPatrol is the build in
plugin in Android Studio for Intellij IDEA that

allows code developers to identify a list of source

code and sinks so developers can see the possible
leak path within the source code and manipulate
the related bugs to fix (Talukder et al., 2019).

We organize our paper as follows. In Section 2,

we provide background and relevant work, in
Section 3, we analyze the mobile application
architecture and threat, in Section 4 we provide
DroidPatrol tools model overview that including
DroidPatrol architecture, features, Data leak

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://proc.iscap.info; https://www.iscap.info

detection test and analysis result, Section 5, we

provide conclusion and future work.

2. BACKGROUND AND RELATED WORK

In recent years, several research for Android app
analysis technologies have been proposed. In this
section we consider background code analysis
into two parts: i) static code analysis and ii)
dynamic code analysis. Static code analysis

generally conforms to coding standards without
executing the program and dynamic code analysis
provides a real or simulated environment where
apps can be installed virtually (Talukder et al.,
2019; Ashfaq et al., 2019).

Static code analysis generally conforms to coding

standards without executing the program. The
main advantage of the static analysis is the
control-flow and data-flow analysis. Control flow
helps identify the possible execution path of the
target app and data flow analysis can specify the
possible predicted values of variables at the
location of execution of the target app (Fan et al.,

2020). For example, StubDroid (Arzt & Bodden,
2016), is a method for automatically generating
correct and precise models for android
applications using precise and extendable
inheritance capabilities. StubDroid approaches
the inferring library specification from binary
distribution that can handle callbacks, a library

method invokes client code. FlowDroid is an open

source Java based static analysis tool that can
detect the potential data leakage in source code
of an Android application. While FlowDroid tool
can detect and analyze data flow in the full
lifecycle of the application development phase, it

is not a highly potential data security tool that can
detect the common security bugs in Android
applications such as intent leakage, SQL injection,
output encoding for secure communication
(Shahriar et al., 2019; Talukder et al., 2019).

DroidSafe (Mumtaz, & El-Alfy, 2017) detects
Android capability leaks to uncover the malicious

code using Control Flow Graph (CFG) and static
taint analysis. CFG can track data flows from

source to sink and helps security analysts to
assess the effectiveness of information leakage.
Compared to other tools such as FlowDroid and
IccTA, DroidSafe can detect the significant
number of malicious information flaws

approximately 69 malicious whereas FlowDroid
and IccTA can detect only six malicious flows.
DroidSafe still suffers from imprecision due to
unacceptable numbers, false positive alarm and
silent mode that may leave errors uncovered.

TrustDroid (Zhao, & Osono, 2012) is a taint

tracking static code analyzer that statically
performs semantic analysis of a compiled Android
application (APK file). It can determine the

leakage of sensitive information in two modes: i)
off-line mode while analysis of the static
resources and the performance indicates no such
problem ii) real-time mode, it is reliable in
considering the performance of the algorithm in
terms of speed and battery/resource
consumption. TrustDroid analyzes the byte code

by searching the entries that manipulate sensitive
data information source code marked as tainted
with taint tag so the data is manipulated by
bytecode when this tag propagates. If tainted
data flows out through a predefined taint sinks
such as network interface, the flag is created and

a function is called for the process of copying one
variable to another variable or to another
memory location.

TaintDroid (Enck et al., 2010) is an
implementation of dynamic taint analysis for
Android applications, an extension of Dalvik
virtual machine (DVM) to optimize efficient

storage and memory-mappable execution
memory, battery life and performance. It also
protects sensitive user information from
untrusted code that shares the limitation of
dynamic taint analysis. TaintDroid uses the
concepts of taint sources from which sensitive
information e.g, text message, IMEI, GPS data or

picture and contact information from mobile

devices are obtained. TaintDroid issues a
potential warning to the users when tainted data
reaches a taint sink. On the other hand,
TaintDorid’s performance overhead occurs due to
application wait state and heavyweight

operations (Beal 2020; Babil et al., 2013). To
minimize the overhead performance, TaintDroid
only tracks explicit data flow but does not control
flaws (e.g., implicit flaws). Full traffic control flaw
requires static analysis, a challenge for third-
party applications. Only direct control flaws can
be tracked dynamically if taint scope is

determined. In addition, TaintDroid creates
significant false positives if the tracked
information contains configure identifiers.

Although static analysis is faster than dynamic
analysis for comprehensive code coverage in
analyzing the apps for exploring different
execution paths, it is not effective on dynamic

loading where dynamic analysis is useful for
runtime behavior of java code. As TaintDroid
cannot handle dynamic payloads to run the native
code level, DroidTrace (Zheng et al., 2014) can
monitor and detect the behaviors of dynamic
payloads. In addition, DroidTrace can use Process

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://proc.iscap.info; https://www.iscap.info

Trace (Ptrace) to monitor the system calls of the

target process while running the dynamic
payloads. DroidTace is also compatible with
different hardware platforms without restoring

emulation.

Cuckoo Sandbox (Jamalpur et al., 2018), a widely
used malware analysis tool based on dynamic
analysis, runs applications under test in a control
emulator, such as virtual platforms Virtual box,
VM ware and KVM on Windows, Linux, and Mac.
Cuckoo sandbox provides a flexible solution for

malware detection while writing code in notepad
and executing files in a virtual platform where the
cuckoo agent acts as a communication medium
between the cuckoo host (actual network) and
cuckoo guest (operating system). It chooses the

guest and uploads code samples when the host

launches a new analysis and generates a
complete report based on a series of tests made
during execution of the malicious code sample.

In Secure Mobile Software development, many
Android plugin tools emerge in recent years. For
the Application Security IDE (ASIDE), Eclipse IDE
extension and plugin help warn developers of

potential vulnerabilities and helps detect potential
bugs and fix the code quality issue during
development. SonarLint (Vermeer, 2019) is an
Eclipse IDE plugin that provides instant feedback
for the most commonly used languages including
Python, JavaScript and Java. The Snyk (Vermeer,

2019) plugin for Eclipse can scan the code

dependencies with dependency trees and can
check vulnerabilities with suggesting possible
fixes. The most significant feature is an integrated
view that provides the origin of vulnerabilities and
how many layers deep. The plugin also provides
the link to Snyk website when vulnerability is

found and its severity that helps developers to
make secure code for apps developing. However,
Eclipse plugin tools do not support Android
Development Studio.

3. ANALYSIS OF MOBILE APPLICATION
THREATS

The main concern of mobile applications is
vulnerability. Most of these applications have a
client server architecture. The server side
component is a web application that interacts with
mobile clients through Application Programming
Interface (API). Although the mobile OS has

various security mechanisms, errors made by
developers in designing and writing code for the
mobile application caused loopholes in user data
protection which may be exploited by attackers.

The common attack scenario is malware infection

that escalates the administrator privilege (root or
jailbreak) when malware requests permission to
access user data and sends data to the attackers

if granted. Figure 1 shows how the client server
interacts with app distribution platforms through
mobile devices (Positive Technology, 2019).

The maximum risk level of vulnerabilities occurs
in both client and server. 60% of vulnerabilities
occur from client server; 89% of vulnerabilities
are the exploited without physical access, and
56% of vulnerabilities are exploited without
administrative privileges such jailbreak or root
access (Positive Technology, 2019). In general,

android applications contain more vulnerabilities
than those applications are written for iOS (43%
vs 38%) but the difference is not significant and
the overall apps security level for both are
roughly the same (Figure 2).

Figure 3 shows the statistical trends of the
percentage of web applications that contain high
risk vulnerability from 2015 to 2019. It shows the
high risk vulnerabilities fall significantly by 20%
compared to that in 2015 (Positive Technology,
2019).

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://proc.iscap.info; https://www.iscap.info

Figure 3. Website by maximum severity of
vulnerabilities

This indicates that the percentage of sites

containing server vulnerabilities gradually
reduces, showing the consistency of improvement
of web application security in the last five years.
The security threat is approached on a regular
basis in web applications that cause severe

financial losses at various levels of Financial
Institutes, IT, manufacturing, Telecom and
Government. Many organizations from private to
the government rely on web apps for their regular
business transactions and customers’ access of
the relevant information. Such communication
and payment activities are the target for cyber-

attacks and many attempts to access the
application server due to the poor code security
patches configured in the application
development phase. Figures 4 and 5 (extracted

from (Statista, 2019) show the vulnerabilities in
organizations and the most common causes of
security threats and malicious attacks.

Figure 4 shows the vulnerability risk levels faced
by organizations. For example, financial institutes

are at high risk for cyber-attack at above 80%,
and government institutes are in high-risk
vulnerability too (70%). Figure 5 shows the web
application vulnerabilities in which SQL injection

is the major security threat globally. 42% of the
threats are carried out through SQL injection,
19% are caused by cross-site scripting, and 16%
by PHP vulnerabilities (Statista, 2019). Since
Android has a complex system in both inter and
intra application for sending and sharing data, the

static analysis usually is limited to detect the

malicious application due to build in application
(e.g., Intent object broadcast which can be
intercepted by malware running on the same

device). Informed by the prior studies, we
propose an Android Application tool, DroidPatrol,
which offers more features to analyze static code
for detecting the known Android security bugs
based on OWASP guidelines.

4. DESIGN OF DROIDPATROL

We divide the DroidPatrol model into four parts:
i) design of DroidPatrols, ii) features of the plugin
iii) test Data leak detection: SQL injection, and iv)
results from analysis. The basic code analyses
focus on the possible malicious injection. The

main idea is that DroidPatrol first uses static

analysis to discover functions of dynamic loading
behavior. For user apps and detection technique,
there exist four steps:

DroidPatrol is an open source plugin for Android
applications which can detect resource leakage
during the application development phase. It

analyzes two apk bases: source and sinks by the
developer. It generates a call graph between the
source and sinks that produces the output of
leakage data. Since the Android application is
based on Java, we use the static analysis library
APIS which basically is Soot as a static analyzer
for java-based applications. DroidPatrol requires

two dependency libraries for jar files i) an android

jar ii) an analysis-jar.

Figure 6 shows the basic architecture of Droid
patrol that depicts the workflow on an apk file.
The input apk is basically app-debug.apk file.

DroidPatrol decomposes the apk and Code
Analysis Libraries (DroidPatrol _Aanlyzer.jar and
DroidPatrol_Android.jar) files, source and sink
API declarations in text files. Then DroidPatrol
decompiles the apk and generates a call graph
and path. Finally, it generates a list of tainted
data leakage output for users.

DroidPlatrol plugin applies tainted data flow
analysis of android application with Tainted data

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://proc.iscap.info; https://www.iscap.info

flow analyzer. It intends to identify Android

application security bugs based on Open Web
Application Security Project (OWASP) to allow
developers and security teams to use the

resources they need for developing secure mobile
applications. The application developers need to
understand the security risks faced by the mobile
apps globally. OWASP provides ten guidelines for
developers to build secure applications and
incorporates essential coding practices (Android
Studio, 2020; Basatwar 2020). Figure 7

highlights the top 10 security risks that needs to
practice by developers for application
development phase.

The DroidPatrol plugin minimizes the mobile
application security risks for SQL injection,
unintended data leakage, and insecure data

storage vulnerability. Diagram 1 shows how the
data flow leakage from the source and sinks for
extraneous functionality, improper platform

usage, extraneous functionality, insecure data
storage, insecure authorization and insecure
communication.

DroidPatrol can manage the SQL injection and
data leakage vulnerability in mobile applications
that are under security threat from cyber

criminals who pass the potential malicious
injection. DroidPatrol can create the flag warning
to the developers in the code line. Application
developers can maintain the secure code for the

development by following OWASP guidelines. A

build package can also be loaded into the Android
Studio IDE, which results in parsing Android java
source code to identify specific API calls and guide

the code to replace what causes the potential
vulnerability in the application development
phase. A build package can also be tested into the
Android Studio IDE, which will result in parsing
Android java source code with notifying the
potential code vulnerabilities, identifying the
specific API call and suggesting the secure code

replacement.

5. EXAMPLE MODULE USING DROIDPATROL

In this section we analyze the web application

vulnerabilities worldwide in 2019. It shows that
the SQL injection is the major security

vulnerability that leads to many data leakage
from the user end. SQL injection is a code
insertion technique in which is used to attack data
driven applications. The malicious code is inserted
by cyber-hacker to normal SQL statements to
dump content from the database. The SQL
injection exploits security vulnerabilities of the

mobile application such as taking use of user
input to embed to malicious code to a hard code
SQL statement. The method of SQL injection
takes into many forms that consists of i)
Incorrectly filtered escape characters, ii)
Incorrect type handling. The DroidPatrol tools
that we developed can be found at:

1.https://sites.google.com/site/droidpatrolprojec
t/sql-injection/pre-lab?authuser=0
2. https://github.com/saiful-
sdsl/ResearchProjects/tree/master/DroidPatrol

Incorrectly filtered escape character form occurs

if user input is passed to a SQL statement without
filtering escape character. The following is the
example showing how this type of SQL injection
takes place.

This type of SQL statement is passed to a function
which in turn sends the string to the connect data

where it is parsed, executed and returns the
results:

If input is not sanitized properly but the
application, the attacker can easily insert crafted

https://sites.google.com/site/droidpatrolproject/sql-injection/pre-lab?authuser=0
https://sites.google.com/site/droidpatrolproject/sql-injection/pre-lab?authuser=0
https://github.com/saiful-sdsl/ResearchProjects/tree/master/DroidPatrol
https://github.com/saiful-sdsl/ResearchProjects/tree/master/DroidPatrol

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://proc.iscap.info; https://www.iscap.info

value as input as following SQL statement

possible to be injected:

The attacker input contains two parts:

1. OR ‘1’ = ‘1’ is a condition which will be
always true and it is accepted as a valid

input by application
2. “- -“ (Double hyphen) instructs the SQL

parser that the rest of the line is a
comment and it should be executed.

When the query is executed, the SQL injection
removes the password verification, so the

injection bypasses user authentication resulting
in the whole database returning as the invalid
input always returns true. In this way, the
consequence becomes a successful SQL injection
attack (Choudary, 2020; Droidpatrol, 2020).

Incorrect type handling injection is the same type

of implementation of incorrectly filtered escape
character, but injection takes place without
appropriate type checking. There are many other
forms of SQL injection, in which an injection is
executed by prematurely terminating a text string
and appending a new command.

The DroidPatroltool we developed tests data flow

analyses to determine the tainted data flow from
every possible point of access. As we defined the
sources and sinks respectively where source
means the location to get the data from external
input such as user database query. Obtaining

data from source can be transferred to a third
party via SMS messaging. Figure 8 shows the
sources as database Cursor object which allows
to retrieve data. SmsManager is used to require
SEND_SMS permission which is the sink list.
Figure 8 shows the Source and sink process.

The DroidPatrol tool provides a data flows list
where information flows between source and

sinks. We ran the analysis to build the apk first
from the menu in the top right corner where it
shows the plugin named Droid Patrol. Under the
DroidPatrol the button is a command called Eye
which is the code vulnerabilities analyzer.

We prebuilt DroidPatrol “source” and “sink” files
that require the process of code analyzer. The
following steps are executed in the analysis
process when the Eye analyzer starts in
DroidPatrol. The pop-up window asks the Drive
name for analyzer and android jar files. It then

asks for the files that contains pre-build
SourcesAndSinks txt file which creates the
Android project folder. The text files are:

<android.app.Activity: android.view.View
findViewById(int)> -> _SOURCE_
<android.database.sqlite.SQLiteDatabase:
android.database.Cursor
rawQuery(java.lang.String,java.lang.String[])> ->
SINK

After analyzing the files, the DroidPatrol shows

the result with 0 leaks. Therefore at the next step,
we change the code in the source and sink files
and the test run shows the following output: the
application one data leak from input field to
SQLite database query. Figure 10 shows the
process of analysis by DroidPatrol.

The screenshot below contains one data leak from
the input field in the SQLite database query.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://proc.iscap.info; https://www.iscap.info

6. STUDENT FEEDBACK

We integrated the DroidPatrol hands-on module
in three courses in the summer 2020 term: IT

6513 (Electronic Health Record and App
Development), IT 6843 (Ethical Hacking &
Networking Security), and IT 3503 (Foundations
of Health IT). To assess the effectiveness of the
DroidPatrol materials and hands-on exercises, we
collected student feedback. The key questions
driving the survey are: What are students’

knowledge levels of the specific technologies? Did
the materials help students learn about the
topics/technologies for analyzing application
security? Did each new exercise help?

The survey was created in the University’s

Qualtrics system. Students were provided the link

to the survey and they completed the survey
online. Five questions to assess students’ learning
are included and the responses were collected
using the Likert scale that uses a 5-point scale, 1
(Highly disagree) to 5 (Highly agree).

Q1. I like working with this hands-on labware.

Q2. The hands-on labware helped me understand

SQL injection attack in mobile application and
sources/sinks for SQL injection.

Q3. The real-world mobile security threats and
attacks provided in the labs help me understand
better the importance of static analysis.

Q4. The hands-on labs help me gain authentic

learning experience to detect data flow via SQL

injection and preventing it.

Q5. The online lab helped me set up the needed
environment for monitoring mobile security
detection.

The sample size of the survey was 65 for the three

course sections. The results show that most
students agreed that the DroidPatrol-based
hands-on labware enabled them to learn SQL
injection and detection by using statics analysis.
The plugin tool also helped them prevent the data
flow through SQL injection.

Figure 11: Survey results of Q1

Figure 12: Survey results of Q2

Figure 13: Survey results of Q3

Figure 14: Survey results of Q4

Students also provided comments on their

experience of using static analysis plugin tool in
the hands-on labware.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 9
http://proc.iscap.info; https://www.iscap.info

• That is a great start for software developer

who can take care of security issues while

developing code.

• The lab is great. We need more like this in

the future.

• Lab is very good with all the necessary

instructions.

• I am taking training on SQL this summer.

This lab helped me in gaining more

knowledge of it.

• Hands on is the best learning tool.

• I really liked doing this hands-on lab. I think

it is easier to learn this way compared to by

reading about how to set up an environment

or prevent an SQL attack.

• I liked the variety of attacks in this lab.

The survey shows that students are interested in
learning by doing, and the plugin-based tool helps
student learn developing secure mobile

applications.

7. CONCLUSIONS

Currently, there is no available plugins for
Android Development Studio that can be

integrated for static data flow analysis. In this
paper, we analyzed mobile application threats
and applied a test method to find the data leakage
through the DroidPatrol plugin that we developed,

based on OWASP security risk analysis and
guidelines. We plan to make the DroidPatrol as an
open source plugin tool for application

developers. The tool can perform tainted data
flow analysis of applications that would help
developers to detect various security bugs in
static code currently leading to a number of
privacy and data leaks. In addition, DroidPatrol
helps developers to flag the code alarm that
would be vulnerable for application.

ACKNOWLEDGEMENT

Our thanks to Affordable Learning Georgia
Textbook Transformation Grants (Round 15,

#484) and SunTrust Summer Faculty Fellowship

for supporting the development of the lab
materials.

8. REFERENCES

Ashfaq, Q., Khan, R., & Farooq, S. (2019). A

Comparative Analysis of Static Code Analysis

Tools that check Java Code Adherence to Java
Coding Standards, Proc. of 2nd International
Conference on Communication, Computing

and Digital systems (C-CODE), pp. 98-103,

doi: 10.1109/C-CODE.2019.8681007.

Arzt, S. & Bodden, E. (2016). StubDroid:
Automatic Inference of Precise Data-Flow

Summaries for the Android Framework, Proc.
of 38th IEEE/ACM International Conference on
Software Engineering (ICSE), Austin, TX, pp.
725-735, doi: 10.1145/2884781.2884816.

Babil, G., Mehani, O., Boreli, R. & Kaafar, M.
(2013). On the effectiveness of dynamic taint
analysis for protecting against private

information leaks on Android-based devices,
Proc. of International Conference on Security
and Cryptography (SECRYPT), Reykjavik,
Iceland, pp. 1-8.

Baset, A. & Denning, T. (2017). IDE Plugins for
Detecting Input-Validation Vulnerabilities,

2017 IEEE Security and Privacy Workshops
(SPW), San Jose, CA, pp. 143-146, doi:
10.1109/SPW.2017.37.

Basatwar, G. (2020). OWASP Mobile Top 10: A
Comprehensive Guide For Mobile Developers
To Counter Risks,
https://www.appsealing.com/owasp-mobile-

top-10-a-comprehensive-guide-for-mobile-
developers-to-counter-risks/.

Beal, V. (2020). Dalvik, Available:
https://www.webopedia.com/TERM/D/Dalvik
.html.

Choudary, A. (2020). What Are SQL Injection
Attacks And How To Prevent Them?,

Available: https://www.edureka.co/blog/sql-
injection-attack.

DroidPatrol. (2020).
https://sites.google.com/site/droidpatrolproj
ect/sql-injection/pre-lab?authuser=0.

Davis, J. (2020). EFF Warns COVID-19 Tracing

Apps Pose Cybersecurity, Privacy
Risks,Available:https://healthitsecurity.com/
news/eff-warns-covid-19-tracing-apps-pose-
cybersecurity-privacy-risks.

Elish, K., Cai, H., Barton, D., Yao, D., & Ryder, B.
(2020). Identifying Mobile Inter-App
Communication Risks, IEEE Transactions on

Mobile Computing, vol. 19, no. 1, pp. 90-102.

Enck, W., Peter, G., Byung-Gon, C., Cox, L., &
Jaeyeon, J., McDaniel, P., & Sheth, A. (2010).
TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on
Smartphones. Communications of the ACM.
57. 393-407. 10.1145/2494522.

Fan, W., Zhang, D., Chen, Y., Wu, F., & Liu, Y.
(2020). EstiDroid: Estimate API Calls of

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5352

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 10
http://proc.iscap.info; https://www.iscap.info

Android Applications Using Static Analysis

Technology, IEEE Access, Vol. 8, pp. 105384-
105398, 10.1109/ACCESS.2020.3000523.

Jamalpur, S., Navya, Y., Raja, P., Tagore, G., &

Rao, G. (2018). Dynamic Malware Analysis
Using Cuckoo Sandbox, Proc. of 2nd
International Conference on Inventive
Communication and Computational
Technologies, Coimbatore, pp. 1056-1060,
doi: 10.1109/ICICCT.2018.8473346.

Meng, X., Qian, K., Lo, D., Bhattacharya, P., &

Wu, F. (2018). Secure Mobile Software
Development with Vulnerability Detectors in
Static Code Analysis, International
Symposium on Networks, Computers and
Communications (ISNCC), pp. 1-4.

Mumtaz, H. & El-Alfy, E. (2017). Critical review of

static taint analysis of android applications for
detecting information leakages, Proc. of 8th
International Conference on Information
Technology (ICIT), Amman, pp. 446-454,
doi: 10.1109/ICITECH.2017.8080041.

Pfeiler, A. (2020). FindBugs-IDEA,
Available:https://plugins.jetbrains.com/plugi

n/3847-findbugs-idea/

Shahriar, H., Riad, A., Talukder, A., Zhang, H., &
Li, Z. (2019). Automatic Security Bug
Detection with FindSecurityBugs Plugin.
Conference on Cybersecurity Education,
Research and Practice.

http://par.nsf.gov/biblio/10156137

Statista. (2019). Global web application
vulnerability taxonomy, Available:
https://www.statista.com/statistics/806081/
worldwide-application-vulnerability-
taxonomy/.

Studio, Android. (2020). Report a bug,

https://developer.android.com/studio/report
-bugs.

Talukder, A., Shahriar, H., Qian, K., Lo, D.,
Ahamed, S., & Rahman, M. (2019).
DroidPatrol: A Static Analysis Plugin For
Secure Mobile Software Development, Proc.
of 43rd IEEE Annual Computer Software and

Applications Conference (COMPSAC),

Milwaukee, WI, USA, pp. 565-569, doi:
10.1109/COMPSAC.2019.00087.

Technologies, Positive. (2019). Vulnerabilities

and threats in mobile applications, 2019,
Available:https://www.ptsecurity.com/ww-
en/analytics/mobile-application-security-
threats-and-vulnerabilities-2019/

Tian, C., Xia, C., Duan, Z. (2018). Android Inter-
Component Communication Analysis with
Intent Revision, IEEE/ACM 40th International

Conference on Software Engineering:
Companion (ICSE-Companion), Gothenburg,
pp. 254-255.

Vermeer, B. (2019). 10 Eclipse plugins you

shouldn’t code without, Available:
https://snyk.io/blog/10-eclipse-plugins-you-

shouldnt-code-without/

Whittaker, Z. (2020). A popular virtual keyboard
app leaks 31 million user's personal data,
ZDNet. [Online]. Available at
https://www.zdnet.com/article/popular-
virtual-keyboard-leaks-31-million-user-data/

Zhang, C., Shahriar, H., & Riad, A. (2020).

Security and Privacy Analysis of Wearable
Health Device, Proc. of 44th IEEE Annual
Computers, Software, and Applications
Conference (COMPSAC), Madrid, Spain, pp.
1767-1772.

Zhao, Z. & Osono, F. (2012). TrustDroid:
Preventing the use of SmartPhones for

information leaking in corporate networks
through the used of static analysis taint
tracking, Proc. of 7th International
Conference on Malicious and Unwanted
Software, pp. 135-143, doi:
10.1109/MALWARE.2012.6461017.

Zheng, M., Sun, M., & Lui, J. (2014). DroidTrace:
A ptrace based Android dynamic analysis
system with forward execution capability,
International Wireless Communications and
Mobile Computing Conference (IWCMC),
Nicosia, pp. 128-133, doi:
10.1109/IWCMC.2014.6906344.

